
Hoare Logic for Conditionals and Loops

Recap

Prove program correctness using Hoare Logic

{True} P {z > 8} where program P

1 x = 1

2 y = x + 1

3 x = 5

4 z = x + 5

Sequence rule.

Assignment rule, backwards with consequence (implicitly).

Weakest precondition (WP) and strongest postcondition (SP).

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 1 / 10



Hoare Logic for Conditionals and Loops

Conditionals

{B ∧ P}C1{Q}, {¬B ∧ P}C2{Q}
{P} if B C1 else C2{Q}

If B is true, C1 is executed;

If B is false (i.e. ¬B), C2 is executed;

Both branches should end up with the same post-conditions;

What is the overall precondition?

P1 : {B ∧ P}, push Q up through C1;

P2 : {¬B ∧ P}, push Q through C2;

P is P1 ∧ P2 .

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 2 / 10



Hoare Logic for Conditionals and Loops

Conditional example

Prove {True} P {z ≥ y ∧ z ≥ x} where program P

1 if x > y

2 z = x

3 else

4 z = y

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 3 / 10



Hoare Logic for Conditionals and Loops

if branch

P1 : {B ∧ P}, push Q up through C1

1 # {True}

2 # {x > y ∨ x ≤ y}
3 if x>y

4 # {x > y}
5 z = x

6 # {x > y, z > y, z = x =⇒ z ≥ y ∧ z ≥ x} Assignment, SP

7 else

8 z = y

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 4 / 10



Hoare Logic for Conditionals and Loops

else branch

P2 : {¬B ∧ P}, push Q through C2

1 # {True}

2 # {x > y ∨ x ≤ y}
3 if x>y

4 z = x

5 else

6 # {x ≤ y}
7 z = y

8 # {x ≤ y, x ≤ z, z = y =⇒ z ≥ y ∧ z ≥ x} Assignment, SP

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 5 / 10



Hoare Logic for Conditionals and Loops

Finished result

Two armed conditional

1 # {True}

2 # {x > y ∨ x ≤ y}
3 if x>y

4 # {x > y}
5 z = x

6 # {x > y, z > y, z = x =⇒ z ≥ y ∧ z ≥ x} Assignment, SP

7 else

8 # {x ≤ y}
9 z = y

10 # {x ≤ y, x ≤ z, z = y =⇒ z ≥ y ∧ z ≥ x} Assignment, SP

11 # {z ≥ x ∧ z ≥ y} Conditional

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 6 / 10



Hoare Logic for Conditionals and Loops

Loops

How do we prove correctness of the loop?

1 # n is predefined

2 ...

3 result = 0

4 i = 0

5 while i <= n:

6 result = result + i

7 i = i + 1

Loop invariants (I)

A property of a program loop that is true before and after each iteration.

{C ∧ I}body{I}
{I} while(C) body {¬C ∧ I}

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 7 / 10



Hoare Logic for Conditionals and Loops

Finding Loop Invariants

1 # n is predefined

2 ...

3 result = 0

4 i = 0

5 while i <= n:

6 result = result + i

7 i = i + 1

General strategies for finding loop invariants (I)

1 What is changing in each iteration: i, result.

2 Think about a specific iteration: from iteration i(0) to iteration
i+ 1(1), only result changed (from 0 to 0 + 1),
result = 0 + 1...+ i− 1.

3 What do you at the end? i = n+ 1, the variable result should contain
the sum of all nature number from 0 to n.

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 8 / 10



Hoare Logic for Conditionals and Loops

Finding Loop Invariants

1 # n is predefined

2 ...

3 result = 0

4 i = 0

5 while i <= n:

6 result = result + i

7 i = i + 1

Initialization, maintenance, termination

I := result = 0 + 1 + ...+ i− 1

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 9 / 10



Hoare Logic for Conditionals and Loops

Q & A

Y. C. Liu (Grinnell) CSC 208-01 02/22/2024 10 / 10


	Hoare Logic for Conditionals and Loops

