
Temporal Verification of Non-linear Programs

Candidate
Yuandong Cyrus Liu

ADVISORY COMMITTEE
Dr. Eric Koskinen, Chairman
Dr. David Naumann, CS, Stevens
Dr. Jun Xu, CS, Stevens
Dr. Daniel Dietsch, SE, Freiburg
Dr. Hang Liu, ECE, Stevens

Stevens Institute of Technology
Department of Computer Science

17th December 2021

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 1 / 46



Outline

1 Introduction

2 LTL of Bitvector Programs with Bitwise Branching
Motivating Examples
Bitwise-branching
Reachability of Bitvector Programs
Termination and LTL Verification of Bitvector Programs

3 LTL of De-compiled Binaries with DarkSea
Example: LTL Verification of De-compiled Binaries
Translations to Re-target De-compilation
DarkSea and Evaluation

4 LTL of Polynomial Programs with Dynamic Analysis
Motivating Example
Proposing Approach

5 Research Plan

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 2 / 46



Introduction

Part 1

1 Introduction

2 LTL of Bitvector Programs with Bitwise Branching
Motivating Examples
Bitwise-branching
Reachability of Bitvector Programs
Termination and LTL Verification of Bitvector Programs

3 LTL of De-compiled Binaries with DarkSea
Example: LTL Verification of De-compiled Binaries
Translations to Re-target De-compilation
DarkSea and Evaluation

4 LTL of Polynomial Programs with Dynamic Analysis
Motivating Example
Proposing Approach

5 Research Plan

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 3 / 46



Introduction

Verification Background

Automated software verification: P � ϕ

Challenges:

Types of program P .

Assertion logic of ϕ.

Our work

Non-linear programs and LTL (including Reachability, Termination).

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 4 / 46



Introduction

Verification Background

Automated software verification: P � ϕ

Challenges:

Types of program P .

Assertion logic of ϕ.

Our work

Non-linear programs and LTL (including Reachability, Termination).

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 4 / 46



Introduction

What is LTL?

Program properties (φ):

Reachability: program never reach a bad state (err).

Termination: program exits.

Linear Temporal Logic (LTL): a generalization of program
behaviors change over time.

LTL Formulae: ¬ϕ, �ϕ, ♦ϕ...
π is a program trace.

π |= �ϕ ⇐⇒ ∀j ≥ 0, πj |= ϕ.

π |= ♦ϕ ⇐⇒ ∃j ≥ 0, such that πj |= ϕ.

LTL encompasses reachability (�¬err) and termination (♦exit).

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 5 / 46



Introduction

What is LTL?

Program properties (φ):

Reachability: program never reach a bad state (err).

Termination: program exits.

Linear Temporal Logic (LTL): a generalization of program
behaviors change over time.

LTL Formulae: ¬ϕ, �ϕ, ♦ϕ...
π is a program trace.

π |= �ϕ ⇐⇒ ∀j ≥ 0, πj |= ϕ.

π |= ♦ϕ ⇐⇒ ∃j ≥ 0, such that πj |= ϕ.

LTL encompasses reachability (�¬err) and termination (♦exit).

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 5 / 46



Introduction

What is LTL?

Program properties (φ):

Reachability: program never reach a bad state (err).

Termination: program exits.

Linear Temporal Logic (LTL): a generalization of program
behaviors change over time.

LTL Formulae: ¬ϕ, �ϕ, ♦ϕ...
π is a program trace.

π |= �ϕ ⇐⇒ ∀j ≥ 0, πj |= ϕ.

π |= ♦ϕ ⇐⇒ ∃j ≥ 0, such that πj |= ϕ.

LTL encompasses reachability (�¬err) and termination (♦exit).

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 5 / 46



Introduction

Benchmarks Repositories (SVCOMP 1 and Ultimate 2)

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
2https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 6 / 46

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL


Introduction

Benchmarks Repositories (SVCOMP 1 and Ultimate 2)

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
2https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 6 / 46

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL


Introduction

Problems in LTL Verification of NLA Programs

Why can’t we currently verify these NLA programs?

Static verification tools are limited for NLA programs:

Complexity in bitvector SMT solving.

Unable to find invariants and rank functions (needed for termination
and LTL) for NLA programs.

Limited benchmarks for temporal verification tasks of
bitvector/polynomial programs.

Some bitvector reachability/termination techniques, but not for LTL.

Dynamic analysis in verification:

Simply run the program; make inferences from observed states.

How to learn invariants, e.g. what kinds of templates.

Results are correct with respect to executing traces, soundness issue.

Validation: SMT solving as a sub-process for correctness checking,
inefficient in bitvector programs.

Some dynamic analyses for reachability/termination, but not LTL.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 7 / 46



Introduction

Problems in LTL Verification of NLA Programs

Why can’t we currently verify these NLA programs?

Static verification tools are limited for NLA programs:

Complexity in bitvector SMT solving.

Unable to find invariants and rank functions (needed for termination
and LTL) for NLA programs.

Limited benchmarks for temporal verification tasks of
bitvector/polynomial programs.

Some bitvector reachability/termination techniques, but not for LTL.

Dynamic analysis in verification:

Simply run the program; make inferences from observed states.

How to learn invariants, e.g. what kinds of templates.

Results are correct with respect to executing traces, soundness issue.

Validation: SMT solving as a sub-process for correctness checking,
inefficient in bitvector programs.

Some dynamic analyses for reachability/termination, but not LTL.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 7 / 46



Introduction

Problems in LTL Verification of NLA Programs

Why can’t we currently verify these NLA programs?

Static verification tools are limited for NLA programs:

Complexity in bitvector SMT solving.

Unable to find invariants and rank functions (needed for termination
and LTL) for NLA programs.

Limited benchmarks for temporal verification tasks of
bitvector/polynomial programs.

Some bitvector reachability/termination techniques, but not for LTL.

Dynamic analysis in verification:

Simply run the program; make inferences from observed states.

How to learn invariants, e.g. what kinds of templates.

Results are correct with respect to executing traces, soundness issue.

Validation: SMT solving as a sub-process for correctness checking,
inefficient in bitvector programs.

Some dynamic analyses for reachability/termination, but not LTL.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 7 / 46



Introduction

Goal: LTL Verification of NLA Porgrams.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 8 / 46



Introduction

Solutions

LTL of Bitvector Programs via Bitwise Branching.a

aYuandong Cyrus Liu, Chengbin Pang, Daniel Dietsch, Eric Koskinen, Ton-Chanh
Le, Georgios Portokalidis, and Jun Xu. Proving LTL Properties of Bitvector Programs
and Decompiled Binaries, APLAS 2021.

LTL of De-compiled Binaries via Translation and DarkSea.b

bBinary verification tool chain DarkSea(plan to submit a tool paper for it).

LTL of Polynomial Programs via Dynamic Analysis.c,d

cYuandong Cyrus Liu, Poster Session, FMCAD-SF 2021.
dPlan to submit it to CAV’22 or OOPSLA’22.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 9 / 46



LTL of Bitvector Programs with Bitwise Branching

Part 2

1 Introduction

2 LTL of Bitvector Programs with Bitwise Branching
Motivating Examples
Bitwise-branching
Reachability of Bitvector Programs
Termination and LTL Verification of Bitvector Programs

3 LTL of De-compiled Binaries with DarkSea
Example: LTL Verification of De-compiled Binaries
Translations to Re-target De-compilation
DarkSea and Evaluation

4 LTL of Polynomial Programs with Dynamic Analysis
Motivating Example
Proposing Approach

5 Research Plan

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 10 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

LTL of Bitvectors

Bitvector Applications

System/low level programs.

Precise integer reasoning.

Memory safety.

Binary verification.

Today’s Verification Tools
SMT solvers like MathSAT,
CVC4, Z3, SMTInterpol
support various theories:a

Bools, Ints, Floats.

FixedSizeBitVectors.

ahttp://smtlib.cs.uiowa.edu/theories.shtml

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 11 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

LTL of Bitvectors

Bitvector Applications

System/low level programs.

Precise integer reasoning.

Memory safety.

Binary verification.

Today’s Verification Tools
SMT solvers like MathSAT,
CVC4, Z3, SMTInterpol
support various theories:a

Bools, Ints, Floats.

FixedSizeBitVectors.

ahttp://smtlib.cs.uiowa.edu/theories.shtml

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 11 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Challenges

Challenges in verification of bitvector programs

Bit-blasting in SMT practical applicationsa, leads to exponential
growth (O(2n)).

Verification tools (e.g. CPAchecker, Ultimate) have limited
support for liveness verification over the bitvector domain.

LTL verification tasks are absent from SV-COMP.

Very limited bitvector benchmarks in SV-COMP.

aKovásznai et al. - 2016 - Complexity of Fixed-Size Bit-Vector Logics

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 12 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Example 1: Reachability

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

CPAchecker, Ultimate etc., tools can verify it via bitvector
theory for safety only.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 13 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Example 2: Termination

1 a = *;

2 assume(a>0);

3 while(x>0){

4 a--;

5 x = x & a;

6 }

Fewer tools can handle termination of bitvector programs.

For example, Ultimate does not support Bitvector logics for
termination, reports Unknown results with Overapproximation.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 14 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Example 3: LTL (ϕ = �(♦(n < 0)))

1 while (1) {

2 n = *; x = *; y = x-1;

3 while(x>0 && n>0) {

4 n++;

5 y = x | n;

6 x = x - y;

7 }

8 n = -1;

9 }

No techniques can prove LTL of bitvector programs. The closest
possible verifier is Ultimate.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 15 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Linear Approximation in SMT Solving

How can we address all of these examples?

Build on ideas from SMT solving: linear approximation.

Support bitvector through linear constraints:
inw(x) =def (0 ≤ x < 2w)

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 16 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Key Idea

Approximate bitvector reasoning with integer reasoning through source
translation.

Various state-of-art verifiers support the integer domain.

Overapproximate bit-vector operations with linear constraints.

Sound transformation.

Open path to binary verification.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 17 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

1. Consider program expression x >> 31 :

Under condition x >= 0, this
expression is just “0”. So replace it with
x >= 0 ? 0 : (x >> 31)

Also, under condition x < 0, this
expression is just “1”, so further replace
x<0 ? 1 : ( x>=0?0:x>>31 )

After this step, Bitwise Branching translates above program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();
7 }

General Rule: e1 ≥ 0∧ e2 = CHAR BIT * sizeof(e1)−1 `E e1>>e2  0

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 18 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

1. Consider program expression x >> 31 :

Under condition x >= 0, this
expression is just “0”. So replace it with
x >= 0 ? 0 : (x >> 31)

Also, under condition x < 0, this
expression is just “1”, so further replace
x<0 ? 1 : ( x>=0?0:x>>31 )

After this step, Bitwise Branching translates above program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();
7 }

General Rule: e1 ≥ 0∧ e2 = CHAR BIT * sizeof(e1)−1 `E e1>>e2  0

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 18 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

1. Consider program expression x >> 31 :

Under condition x >= 0, this
expression is just “0”. So replace it with
x >= 0 ? 0 : (x >> 31)

Also, under condition x < 0, this
expression is just “1”, so further replace
x<0 ? 1 : ( x>=0?0:x>>31 )

After this step, Bitwise Branching translates above program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();
7 }

General Rule: e1 ≥ 0∧ e2 = CHAR BIT * sizeof(e1)−1 `E e1>>e2  0

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 18 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

1. Consider program expression x >> 31 :

Under condition x >= 0, this
expression is just “0”. So replace it with
x >= 0 ? 0 : (x >> 31)

Also, under condition x < 0, this
expression is just “1”, so further replace
x<0 ? 1 : ( x>=0?0:x>>31 )

After this step, Bitwise Branching translates above program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();
7 }

General Rule: e1 ≥ 0∧ e2 = CHAR BIT * sizeof(e1)−1 `E e1>>e2  0

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 18 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

1. Consider program expression x >> 31 :

Under condition x >= 0, this
expression is just “0”. So replace it with
x >= 0 ? 0 : (x >> 31)

Also, under condition x < 0, this
expression is just “1”, so further replace
x<0 ? 1 : ( x>=0?0:x>>31 )

After this step, Bitwise Branching translates above program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();
7 }

General Rule: e1 ≥ 0∧ e2 = CHAR BIT * sizeof(e1)−1 `E e1>>e2  0

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 18 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

2. Now consider expression s&(1-s) :

Under condition s>=0∧(1-s)=1, this
expression is equal to s&1, which is
s%2, so replace it with
(s>=0&&(1-s)==1?s%2 :(s&(1-s)))

After this 2nd step, Bitwise Branching translates this program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s>=0 && (1-s)==1 ? s%2 : (s&(1-s))) ;

6 if (r<0) error ();
7 }

General rule: e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 19 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

2. Now consider expression s&(1-s) :

Under condition s>=0∧(1-s)=1, this
expression is equal to s&1, which is
s%2, so replace it with
(s>=0&&(1-s)==1?s%2 :(s&(1-s)))

After this 2nd step, Bitwise Branching translates this program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s>=0 && (1-s)==1 ? s%2 : (s&(1-s))) ;

6 if (r<0) error ();
7 }

General rule: e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 19 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

2. Now consider expression s&(1-s) :

Under condition s>=0∧(1-s)=1, this
expression is equal to s&1, which is
s%2, so replace it with
(s>=0&&(1-s)==1?s%2 :(s&(1-s)))

After this 2nd step, Bitwise Branching translates this program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s>=0 && (1-s)==1 ? s%2 : (s&(1-s))) ;

6 if (r<0) error ();
7 }

General rule: e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 19 / 46



LTL of Bitvector Programs with Bitwise Branching Motivating Examples

Transformation with bitwise branching

1 int r, s, x;

2 while(x>0){

3 s = x >> 31 ;

4 x--;

5 r = x + (s&(1-s)) ;

6 if (r<0) error ();

7 }

2. Now consider expression s&(1-s) :

Under condition s>=0∧(1-s)=1, this
expression is equal to s&1, which is
s%2, so replace it with
(s>=0&&(1-s)==1?s%2 :(s&(1-s)))

After this 2nd step, Bitwise Branching translates this program to:
1 int r, s, x;
2 while(x>0){

3 s = x>=0 ? 0 : ( x<0 ? 1 : x >> 31) ;
4 x--;

5 r = x + (s>=0 && (1-s)==1 ? s%2 : (s&(1-s))) ;

6 if (r<0) error ();
7 }

General rule: e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 19 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Rewriting Rules

Table: Rewriting rules for arithmetic expressions.

Linear Condition BV Expr. Linear Apx.
e1 = 0 `E e1&e2  0 [R-And-0]

(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 `E e1&e2  e1 [R-And-1]
(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) `E e1&e2  e1&&e2 [R-And-LOG]

e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2 [R-And-LBS]
e2 = 0 `E e1|e2  e1 [R-Or-0]

(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 `E e1|e2  1 [R-Or-1]
e2 = 0 `E e1^e2  e1 [R-Xor-0]

e1 = e2 = 0 ∨ e1 = e2 = 1 `E e1^e2  0 [R-Xor-Eq]
(e1 = 1 ∧ e2 = 0) ∨ (e1 = 0 ∧ e2 = 1) `E e1^e2  1 [R-Xor-Neq]

e1 ≥ 0 ∧ e2 = CHAR BIT * sizeof(e1)− 1 `E e1>>e2  0 [R-RightShift-Pos]
e1 < 0 ∧ e2 = CHAR BIT * sizeof(e1)− 1 `E e1>>e2  −1 [R-RightShift-Neg]

Judgment C `E ebv  eint means under condition C bitvector
expression ebv can be approximated with linear expression eint.

Then, apply a substitution δ, and replace ebv with if-then-else

expression Cδ ? eintδ : ebv

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 20 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Weakening Rules

Table: Weakening rules for Relational Expressions & Assignment Statements.

Linear Condition Statement Linear Approximation
e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2  r<=e1 && r<=e2 [W-And-Pos]
e1 < 0 ∧ e2 < 0 `S r ople e1&e2  r<=e1 && r<=e2 && r<0 [W-And-Neg]
e1 ≥ 0 ∧ e2 < 0 `S r opeq e1&e2  0<=r && r<=e1 [W-And-Mix]

(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) `S (e1|e2)==0  e1==0 && e2==0 [R-Or-LOG]
e1 ≥ 0 ∧ is const(e2) `S r opge e1|e2  r>=e2 [W-Or-Const]

e1 ≥ 0 ∧ e2 ≥ 0 `S r opge e1|e2  r>=e1 && r>=e2 [W-Or-Pos]

e1 < 0 ∧ e2 < 0 `S r opeq e1|e2  r>=e1 && r>=e2 && r<0 [W-Or-Neg]

e1 ≥ 0 ∧ e2 < 0 `S r opeq e1|e2  e2<=r && r<0 [W-Or-Mix]

e1 ≥ 0 ∧ e2 ≥ 0 `S r opge e1^e2  r>=0 [W-XOr-Pos]

e1 < 0 ∧ e2 < 0 `S r opge e1^e2  r>=0 [W-XOr-Neg]

e1 ≥ 0 ∧ e2 < 0 `S r ople e1^e2  r<0 [W-XOr-Mix]
e1 ≥ 0 `S r ople ∼e1  r<0 [W-Cpl-Pos]
e1 < 0 `S r opge ∼e1  r>=0 [W-Cpl-Neg]

ople ∈ {<,<=,==, := }, opge ∈ {>,>=,==, := }, and opeq ∈ {==, := }

Judgment C `S sbv  sint means under condition C bitvector
statement sbv can be approximated with linear statement sint.

Then, apply a substitution δ, and replace sbv with if-then-else

statement if Cδ then assume(sintδ) else sbv

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 21 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Weakening Rules and Termination

e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2  r<=e1 && r<=e2 [W-And-Pos]

1 a = *;

2 assume(a>0);

3 while(x>0){

4 a--;

5 x = x & a;

6 }

I : x > 0 ∧ a > 0

T : x>0 ∧ a′=a−1 ∧ x′=x&a′

Tools fail to show:
I ∧ T ∧ x′>0 =⇒ I ′

1 a = *; assume(a > 0);

2 while (x > 0) {

3 { x > 0 ∧ a > 0 }
4 a--;

5 if (x >= 0 && a >= 0)

6 then { x = *; assume(x <= a); }
7 else { x = x & a; }
8 }

T ′ = x>0∧a′ = a−1∧((x≥0∧a′≥0∧x′≤a′)∨
(¬(x ≥ 0 ∧ a′ ≥ 0) ∧ x′ = x&a′))

Tools can prove that I ∧ T ′ ∧ x′>0 =⇒ I ′,
ranking function R(x, a) = a

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 22 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Weakening Rules and Termination

e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2  r<=e1 && r<=e2 [W-And-Pos]

1 a = *;

2 assume(a>0);

3 while(x>0){

4 a--;

5 x = x & a;

6 }

I : x > 0 ∧ a > 0

T : x>0 ∧ a′=a−1 ∧ x′=x&a′

Tools fail to show:
I ∧ T ∧ x′>0 =⇒ I ′

1 a = *; assume(a > 0);

2 while (x > 0) {

3 { x > 0 ∧ a > 0 }
4 a--;

5 if (x >= 0 && a >= 0)

6 then { x = *; assume(x <= a); }
7 else { x = x & a; }
8 }

T ′ = x>0∧a′ = a−1∧((x≥0∧a′≥0∧x′≤a′)∨
(¬(x ≥ 0 ∧ a′ ≥ 0) ∧ x′ = x&a′))

Tools can prove that I ∧ T ′ ∧ x′>0 =⇒ I ′,
ranking function R(x, a) = a

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 22 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Weakening Rules and Termination

e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2  r<=e1 && r<=e2 [W-And-Pos]

1 a = *;

2 assume(a>0);

3 while(x>0){

4 a--;

5 x = x & a;

6 }

I : x > 0 ∧ a > 0

T : x>0 ∧ a′=a−1 ∧ x′=x&a′

Tools fail to show:
I ∧ T ∧ x′>0 =⇒ I ′

1 a = *; assume(a > 0);

2 while (x > 0) {

3 { x > 0 ∧ a > 0 }
4 a--;

5 if (x >= 0 && a >= 0)

6 then { x = *; assume(x <= a); }
7 else { x = x & a; }
8 }

T ′ = x>0∧a′ = a−1∧((x≥0∧a′≥0∧x′≤a′)∨
(¬(x ≥ 0 ∧ a′ ≥ 0) ∧ x′ = x&a′))

Tools can prove that I ∧ T ′ ∧ x′>0 =⇒ I ′,
ranking function R(x, a) = a

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 22 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Weakening Rules and Termination

e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2  r<=e1 && r<=e2 [W-And-Pos]

1 a = *;

2 assume(a>0);

3 while(x>0){

4 a--;

5 x = x & a;

6 }

I : x > 0 ∧ a > 0

T : x>0 ∧ a′=a−1 ∧ x′=x&a′

Tools fail to show:
I ∧ T ∧ x′>0 =⇒ I ′

1 a = *; assume(a > 0);

2 while (x > 0) {

3 { x > 0 ∧ a > 0 }
4 a--;

5 if (x >= 0 && a >= 0)

6 then { x = *; assume(x <= a); }
7 else { x = x & a; }
8 }

T ′ = x>0∧a′ = a−1∧((x≥0∧a′≥0∧x′≤a′)∨
(¬(x ≥ 0 ∧ a′ ≥ 0) ∧ x′ = x&a′))

Tools can prove that I ∧ T ′ ∧ x′>0 =⇒ I ′,
ranking function R(x, a) = a

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 22 / 46



LTL of Bitvector Programs with Bitwise Branching Bitwise-branching

Our experiments show bitwise branching also works well for LTL (we
will see in the next slides).

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 23 / 46



LTL of Bitvector Programs with Bitwise Branching Reachability of Bitvector Programs

Implementation and Benchmarks

Bitwise branching implementation

A fork of Ultimate repositorya

Recursive AST transformation during Ultimate’s translation from C
to Boogie

ahttps://github.com/ultimate-pa/ultimate

Contributed Benchmarks

1 ReachBitBench, TermBitBench, LTLBitBench for reachability,
termination, LTL verification, respectively.

2 BitHacks, online code optimizationa adapted to termination, LTL
verification.

ahttps://graphics.stanford.edu/˜seander/bithacks.html

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 24 / 46



LTL of Bitvector Programs with Bitwise Branching Reachability of Bitvector Programs

Implementation and Benchmarks

Bitwise branching implementation

A fork of Ultimate repositorya

Recursive AST transformation during Ultimate’s translation from C
to Boogie

ahttps://github.com/ultimate-pa/ultimate

Contributed Benchmarks

1 ReachBitBench, TermBitBench, LTLBitBench for reachability,
termination, LTL verification, respectively.

2 BitHacks, online code optimizationa adapted to termination, LTL
verification.

ahttps://graphics.stanford.edu/˜seander/bithacks.html

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 24 / 46



LTL of Bitvector Programs with Bitwise Branching Reachability of Bitvector Programs

Experiments: Reachability with various solvers

Figure: Performance of UltimateBwB with bitwise branching “BwB” in integer
mode (solid lines) versus Ultimate (dashed lines, “BV” indicating bitvector
mode) on bitvector programs, using various SMT solvers.

Default Ultimate (integer mode SItp-Z3) returns Unknown for 10/12
“ReachBit”, 16/16 “BitHacks”.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 25 / 46



LTL of Bitvector Programs with Bitwise Branching Termination and LTL Verification of Bitvector Programs

Experiments: Termination and LTL

State-of-the-art verification tools

Tool BitVec. Term. LTL
Ultimate Limited Yes Yes
AProVE Yes Yes No
KITTeL Yes Yes No
CPAchecker Limited Yes No
2LS Yes Yes No

UltimateBwB Yes Yes Yes

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 26 / 46



LTL of Bitvector Programs with Bitwise Branching Termination and LTL Verification of Bitvector Programs

Experiments: LTL

LTL Results Overview

(iv) Bithacks (iii) LTLBit
Bench

Ultimate w. BwB Ultimate w. BwB

4 (Satisfied) 3 10 - 21
7 (Unsatisfied) - 7 - 20
?(Unknown) 21 5 42 -
T (Time Out) 1 1 - 1
M (Out of Memory) 1 3 - -

BitHacks, 18 satisfied, 8 violated.

LTLBitBench, 22 programs satisfying LTL property, 20 programs are
violated.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 27 / 46



LTL of De-compiled Binaries with DarkSea

Part 3

1 Introduction

2 LTL of Bitvector Programs with Bitwise Branching
Motivating Examples
Bitwise-branching
Reachability of Bitvector Programs
Termination and LTL Verification of Bitvector Programs

3 LTL of De-compiled Binaries with DarkSea
Example: LTL Verification of De-compiled Binaries
Translations to Re-target De-compilation
DarkSea and Evaluation

4 LTL of Polynomial Programs with Dynamic Analysis
Motivating Example
Proposing Approach

5 Research Plan

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 28 / 46



LTL of De-compiled Binaries with DarkSea Example: LTL Verification of De-compiled Binaries

LTL of De-compiled Binaries

Why binary verification & challenges

Why: Executable is the one runs on machine, compiler errors,
optimizations, proprietary software, malware etc..

Challenges: Disassembly (function boundaries, symbol table, stack
frame), control flow recovery etc..

Decompiled code needs bitwise branching

if(x <= 1)a in de-compiled code:

(((tmp 42!=0u)&1)&((((tmp 44 == 0u)&

1^(((((tmp 44^tmp 45)+tmp 45)==2u)&1)))&1)))&1

Decompilation is an approach for binary verification.

ahttp://github.com/ultimate-
pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 29 / 46



LTL of De-compiled Binaries with DarkSea Translations to Re-target De-compilation

Challenges Through An Example De-compiled Binary

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 30 / 46



LTL of De-compiled Binaries with DarkSea DarkSea and Evaluation

DarkSea Overview

DARKSEA

Binary
Translations 

for verification

McSema

IR
IDAPro +
McSema

ULTIMATEBWB

Bitwise Branching
Proof or 

cex.

Slicing &
llvm-cbe C

DARKSEA

IR

DarkSea translations to re-target lifting for verification

Run-time environment.

Passing emulation state through procedures.

Nested structures.

Property-directed slicing.

DarkSea: https://github.com/cyruliu/darksea

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 31 / 46

https://github.com/cyruliu/darksea


LTL of De-compiled Binaries with DarkSea DarkSea and Evaluation

LTL Experiments on Lifted Binaries

Table: Ultimate vs. DarkSea on decompiled programs with LTL properties.

Ultimate DarkSea
Benchmark Property Exp. Time Result Time Result

01-exsec2.s.c ♦(�x = 1) 4 4.45s j 11.23s 4
01-exsec2.s.f.c.c ♦(�x 6= 1) 7 6.31s j 10.36s 7
SEVPA gccO0.s.c �(x > 0⇒ ♦y = 0) 4 6.31s j 22.92s 4
SEVPA gccO0.s.f.c �(x > 0⇒ ♦y = 2) 7 5.16s ? 14.92s 7
acqrel.simplify.s.c �(x = 0⇒ ♦y = 0) 4 5.17s j 9.00s 4
acqrel.simplify.s.f.c.c �(x = 0⇒ ♦y = 1) 7 6.06s j 17.60s 7
exsec2.simplify.s.c �♦x = 1 4 4.92s j 5.60s 4
exsec2.simplify.s.f.c.c �♦x 6= 1 7 4.55s j 6.28s 7

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 32 / 46



LTL of Polynomial Programs with Dynamic Analysis

Part 4

1 Introduction

2 LTL of Bitvector Programs with Bitwise Branching
Motivating Examples
Bitwise-branching
Reachability of Bitvector Programs
Termination and LTL Verification of Bitvector Programs

3 LTL of De-compiled Binaries with DarkSea
Example: LTL Verification of De-compiled Binaries
Translations to Re-target De-compilation
DarkSea and Evaluation

4 LTL of Polynomial Programs with Dynamic Analysis
Motivating Example
Proposing Approach

5 Research Plan

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 33 / 46



LTL of Polynomial Programs with Dynamic Analysis Motivating Example

Polynomial Program Example
LTL Property:
�♦(y == 1))

1 int x, y, z;

2 while (1){

3 z = nondet ();

4 x = -z*z+2*z+6;

5 y = 0;

6 if(x <=7){

7 y=1;

8 }

9 }

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 34 / 46



LTL of Polynomial Programs with Dynamic Analysis Motivating Example

Polynomial Program Example
LTL Property:
�♦(y == 1))

1 int x, y, z;

2 while (1){

3 z = nondet ();

4 x = -z*z+2*z+6;

5 y = 0;

6 if(x <=7){

7 y=1;

8 }

9 }

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 34 / 46



LTL of Polynomial Programs with Dynamic Analysis Motivating Example

Polynomial Program Example
LTL Property:
�♦(y == 1))

1 int x, y, z;

2 while (1){

3 z = nondet ();

4 x = -z*z+2*z+6;

5 y = 0;

6 if(x <=7){

7 y=1;

8 }

9 }

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 34 / 46



LTL of Polynomial Programs with Dynamic Analysis Proposing Approach

Summary of the Proposed Approach

Static analysis and transformation:

Locate and identify nonlinear expressions, instrument program with
trace functions and fresh variables to record the concrete data
transition.

Further instrument the program with selected invariants from
dynamic step, run static analysis tools.

Dynamic inferring:

Random sampling concrete traces.

Use dynamic tools to run and infer program invariants at trace
locations of interest.

Find the effective linear invariant for nonlinear expressions.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 35 / 46



LTL of Polynomial Programs with Dynamic Analysis Proposing Approach

Summary of the Proposed Approach

Static analysis and transformation:

Locate and identify nonlinear expressions, instrument program with
trace functions and fresh variables to record the concrete data
transition.

Further instrument the program with selected invariants from
dynamic step, run static analysis tools.

Dynamic inferring:

Random sampling concrete traces.

Use dynamic tools to run and infer program invariants at trace
locations of interest.

Find the effective linear invariant for nonlinear expressions.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 35 / 46



Research Plan

Part 5

1 Introduction

2 LTL of Bitvector Programs with Bitwise Branching
Motivating Examples
Bitwise-branching
Reachability of Bitvector Programs
Termination and LTL Verification of Bitvector Programs

3 LTL of De-compiled Binaries with DarkSea
Example: LTL Verification of De-compiled Binaries
Translations to Re-target De-compilation
DarkSea and Evaluation

4 LTL of Polynomial Programs with Dynamic Analysis
Motivating Example
Proposing Approach

5 Research Plan

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 36 / 46



Research Plan

Contributions and Findings

Part 2:
(My role: theory, implementation, benchmarks, experiments.)

A novel theory of source level bitwise branching.

An implementation of bitwise branching within Ultimate framework.

Evaluations show that bitwise branching incurs negligible overhead.

New benchmarks suites for reachability, termination 3, and LTL.

Part 3:
(My role: benchmarks, partial implementation, experiments.)

Translations that re-target lifted binaries to verification.

DarkSea tool chain prepares decompiled programs for verification.

A new benchmark suite for LTL of binary executables.

Experimental results showing that DarkSea is the first tool to verify
LTL properties of binary executables.

3gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-bwb

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 37 / 46

gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-bwb


Research Plan

Contributions and Findings

Part 2:
(My role: theory, implementation, benchmarks, experiments.)

A novel theory of source level bitwise branching.

An implementation of bitwise branching within Ultimate framework.

Evaluations show that bitwise branching incurs negligible overhead.

New benchmarks suites for reachability, termination 3, and LTL.

Part 3:
(My role: benchmarks, partial implementation, experiments.)

Translations that re-target lifted binaries to verification.

DarkSea tool chain prepares decompiled programs for verification.

A new benchmark suite for LTL of binary executables.

Experimental results showing that DarkSea is the first tool to verify
LTL properties of binary executables.

3gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-bwb

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 37 / 46

gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/main/c/termination-bwb


Research Plan

Proposed Research

Part 4: (Expected)
(My role: implementaion, benchmarks, experiments, contributed to
algorithm design.)

A novel strategy, combining dynamic and static analysis in order to
verify programs with bitvector and other non-linear expressions.

(Proposed) An algorithm.

(Proposed) An implementation.

(Proposed) An evaluation.

Expected contributions evaluation

A submitted peer review paper.

A working artifact with sets of benchmarks.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 38 / 46



Research Plan

Q & A

Thank You!

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 39 / 46



Research Plan

Basic Notations

Standard notions of programs and semantics.

Σ : Var → Val , a state space mapping variables to values.

[[exp]] : Σ→ Val , expressions semantics.

[[stmt]] : Σ→ P(Σ), statements semantics.

[[P ]] : traces of program P .

Define rewriting rules for expressions and statements.

TE : exp→ exp, rewriting rules application for expressions.

TS : stmt→ stmt, weakening rules application for statements.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 40 / 46



Research Plan

Soundness Proof

Lemma (Rule correctness)

For every rule C `E e e′, ∀σ. C(σ)⇒ e′ = σ(e), [[e]] = [[e′]].
For every rule C `S s s′, ∀σ. C(σ)⇒ s′ = σ(s), [[s]] ⊆ [[s′]].

Theorem (Soundness)

For every P, TE , TS , [[P ]] ⊆ [[TS{TE{P}}]].

Prove by induction on traces, TE preserves traces equivalence, TS
preserves trace inclusion.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 41 / 46



Research Plan

Experiments: Termination

Termination Results Overview
(ii) TermBitBench (i) AproveBench

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

4 (Terminating) 5 1 7 8 2 18 1 3 3 14 2 2
E4 (FN) 1 - - - - - - - - - - -
7 (Nonterminating) 6 10 - 8 - 13 - - - - - -
E7 (FP) 2 7 - 3 - - - 10 - - 2 6
?(Unknown) 14 13 - - 29 - 10 3 - 1 14 8
T (Time Out) 3 - 19 12 - - 7 - 10 2 - 1
M (Out of Memory) - - - - - - - - - 1 - 1
j (Crash) - - 5 - - - - 2 5 - - -

TermBitBench, 18 terminating, 13 non-terminating.

AproveBench, 18/118 or 15% are bitvector programs.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 42 / 46



Research Plan

Termination Experiments on Lifted Binaries

Table: Termination of Lifted Binaries, with and without DarkSea translations.

Raw McSema DarkSea transl.

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

A
P
r
o
V
E

C
P
A
c
h
e
c
k
e
r

K
IT

T
e
L

2
L
S

U
lt

im
a
t
e

U
lt

im
a
t
e
B
w
B

4 - - - - - - - - - - 18 18
j - 18 - - 3 - - - - - - -
M - - - - - 3 - - - - - -
T - - 18 - 15 15 - 18 18 - - -
? 18 - - 18 - - 18 - - 18 - -

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 43 / 46



Research Plan

Bitvector Example

LTL Property: G((x > 0) =⇒ F (y == 0))

1 while(c <50){

2 c++;

3 d = nondet ();

4 if(d<0) d = d*( -1);

5 x = nondet ();

6 y = 1;

7 while(x>0){

8 d--;

9 x = (x&d) -1;

10 if (x<=1){

11 y=0;

12 }

13 }

Invariant −pre x+ x ≤ −1 shows x is decreasing at bitwise location 9.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 44 / 46



Research Plan

Bitvector Example

LTL Property: G((x > 0) =⇒ F (y == 0))

1 while(c <50){

2 c++;

3 d = nondet ();

4 if(d<0) d = d*( -1);

5 x = nondet ();

6 y = 1;

7 while(x>0){

8 d--;

9 x = (x&d) -1;

10 if (x<=1){

11 y=0;

12 }

13 }

Invariant −pre x+ x ≤ −1 shows x is decreasing at bitwise location 9.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 44 / 46



Research Plan

Bitvector Example

LTL Property: G((x > 0) =⇒ F (y == 0))

1 while(c <50){

2 c++;

3 d = nondet ();

4 if(d<0) d = d*( -1);

5 x = nondet ();

6 y = 1;

7 while(x>0){

8 d--;

9 x = (x&d) -1;

10 if (x<=1){

11 y=0;

12 }

13 }

Invariant −pre x+ x ≤ −1 shows x is decreasing at bitwise location 9.

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 44 / 46



Research Plan

Implementation Algorithm

TE : exp→ exp to translate expressions.

type rule_exp = (exp -> exp -> exp) * (exp -> exp -> exp)

let rec TE (e:exp) : exp =

match e with

| BinOp(⊗,e1,e2) ->

let e1’ = TE e1 in

let e2’ = TE e2 in

let rules = Rules.find_exp(⊗) in

fold_left (fun acc (cond ,repl) ->

ITE(cond e1’ e2’,repl e1’ e2 ’,acc)

) (BinOp(⊗,e1, e2)) rules

| _ -> e

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 45 / 46



Research Plan

Implementation Algorithm

TS : stmt→ stmt to translate assignment statements.

type rule_stmt = (exp -> exp -> exp) * (lhs -> exp -> exp -> stmt)

let Ts (s:stmt) : stmt =

match s with

| Assign(lhs ,BinOp(⊗,e1,e2)) ->

let e1’ = TE e1 in

let e2’ = TE e2 in

let rules = Rules.find_stmt(⊗)in
fold_left (fun acc (cond ,repl) ->

IfElseStmt(cond e1 ’ e2’,repl lhs e1’ e2’, acc)

) (Assign(l, BinOp(⊗, e1, e2) rules

| _ -> s

Y. C. Liu (Stevens Institute of Technology) LTL Non-linear 17th December 2021 46 / 46


	Introduction
	LTL of Bitvector Programs with Bitwise Branching
	Motivating Examples
	Bitwise-branching
	Reachability of Bitvector Programs
	Termination and LTL Verification of Bitvector Programs

	LTL of De-compiled Binaries with DarkSea
	Example: LTL Verification of De-compiled Binaries
	Translations to Re-target De-compilation
	DarkSea and Evaluation

	LTL of Polynomial Programs with Dynamic Analysis
	Motivating Example
	Proposing Approach

	Research Plan

