
 1

Malicious Application Dynamic Detection in

Real-Time API Analysis

Shiting Xu, Yuandong Liu, Yanhui Guo

BUPT National Engineering Lab for Mobile Network Technologies

Beijing University of Posts and Telecommunications

xvshiting@live.com, cyrus.cl@outlook.com

yhguo@bupt.edu.cn

Abstract—There are various malicious applications (app) in

mobile platform, especially for Android devices, it is difficult to

develop a model directly for malwares, due to the limitation of

application testing samples. In this paper we propose a novel

malicious application detection model RT-MAD for Android

devices: Real-Time Malicious Application Detection. This model

can generate a malicious app space through normal application

modeling by (i) first we develop an Android Real-time API

monitor tool to collect API data for each app running on the

devices, and cleaning them into time series data, (ii) then we

modify Hidden Markov Model (HMM) to train the majority

genres of normal apps, obtaining the normal apps space, (iii) and

finally we use Randomized Real-Valued Negative Selection

(RRNS) to generate a set of likelihood vectors based on the normal

app space, covering all possible malicious applications, thus we get

the malicious app space for malwares detection. We conduct

experiments on HMM training and RRNS malicious apps space

generation, the result shows that we can get precision of 91% for

normal genres of apps in HMM model. However, in some

situation, the malicious apps space generated in RRNS would

cover the normal apps, for the safety of devices, it is acceptable

since our RT-MAD can achieve precision of 96% in malwares

detection.

Keywords—Android Malware Dynamic Detection, API

Monitor, HMM, RRNS

I. INTRODUCTION

n recent years, there has been a gradual improvement in

smartphone adoption. According to IDC [1], Android owned

82.8% of the global smartphone market in 2015 Q2. It also

dominated the smartphone market with 84.8% in 2014 Q2. At

the same time the number of malware is also increasing, it can

cause adverse effect on user’s daily life. Although there are a

number of ways to help distinguish between normal and

abnormal applications, but how to detect malicious applications

accurately and efficiently is still an open question [3].

 Android malware detection methods are mainly divided into

static analysis and dynamic detections. Machine learning

methods are widely used in both of them. [2], the difference

between static analysis and dynamic detections is the different

information collected, which are used as identifying features in

detection models. For static analysis， the approaches are

usually focused on permission requests called by apps [4], and

there are some other methods use both permission and API

calling as features [5]. Semantics-based detection method [7]

also widely used in static analysis. The advantage of static

detection is high efficiency but when the application’s

developers adopt the technology of obscured or anti-unpack

this method would be invalid. With respect to dynamic

detection, in our previous work, we developed a method to

detect malicious apps by collecting behaviors data of

applications running on devices [8]. Generally, the dynamic

data refers to API invoking, mobile data connecting and

memory consuming etc. In recent literatures, machine Learning

algorithms have been used in malware detection [6] include:

SVM [10] (Support Vector Machine, SVM), NBM (Naive

Bayesian Model, NBM), GBDT (Gradsaient Boost Decision

Tree, GBDT), Decision Tree or ensemble learning method [11]

etc.

There has been many research on the Real-time dynamic

detection. Iker Burguera and Urko Zurutuza present a Beha-

vior-Based Malware Detection System for Android named

Cro-wdroid [12]. In this system they use a tool available in

Linux called Strace to collect the system calls and then use a

simple 2-means clustering algorithm to distinguish between

normal application and abnormal application. The most

important contribution of this work [12] is the mechanism they

propose for obtaining real traces of application behavior. Luoxu

Min proposes a runtime-based behavior dynamic analysis

detection method [13]. In this method Android application run

on the emulator to generate the run-time log file. Then they use

the sematic analysis and regular expression technology to

analyze the filtered log file. Gerardo Canfora’s approach take

account all the system calls and they also consider sequence of

system call [14]. Xiao Xi presents an approach for detecting

Android malware with system call sequences based on Markov

chains and Back-propagation neural network [15]. Dong

Hang’s method [16] is the first time to adopt HMM (Hidden

Markov Model, HMM) in dynamic detection. In his approach

real-time network’s and memory’s information has been used

to build feature. Y Wei capture the behavior of software, then

use machine learning method to learn the dynamic behavior of

malwares[17]. However, all dynamic detection methods from

above literatures were try to construct detection model based on

malwares, it is difficult to cover all malicious space due to the

inadequate of malicious application.
In this paper, we propose a novel dynamic detection model

named RT-MAD (Real-Time Malicious Application Detection,

RT-MAD), which can use real-time API data of an application

to detect Android malware efficiently and accurately. Instead of

study the malicious applications directly, RT-MAD modeling

the normal applications that frequently used by people, and

generates the abnormal space for malicious application

detection. Fig 1 illustrates the framework of our model.

I

mailto:xvshiting@live.com
mailto:cyrus.cl@outlook.com
http://xueshu.baidu.com/s?wd=author%3A%28Yu%20Wei%29%20Towson%20Univ.%2C%20Towson%2C%20MD%2C%20USA&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

 2

RT-MAD model consists of five modules, in real-time API data

collection module, we develop a tool to collect run-time API

data of applications, and clean them in data processing module,

generating time sequence data. HMM features space training

module has two components, the one is to build HMM modules

with time sequence data of typical applications, and the other

component is, by using HMM models we built respectively, to

compute likelihood vectors between applications and the

typical applications. Following, we adopt RRNS [18]

(Randomized Real-Valued Negative Selection, RRNS) in

auto-produce malicious vector module to construct a malicious

vector database. Finally, in detection module, we calculate the

minimum Euclidean distance between test application’s

likelihood vector and the malicious vector database, identifying

the current application is a malware or not.

The remainder of this paper is structured as follows. Section

II introduces our model in details. In Section III, we present

experiments and evaluation of our model. Finally, related

works are discussed in Section IV and we conclude our study in

Section V.

II. RT-MAD MODELING

Our RT- MAD model consists of three parts: Data

Pre-processing, HMM Features Space Training and Malicious

Application Detection. For the data pre-processing, we firstly

develop a tool to dynamically collect all the API data invoked

by applications running in the device, and then we write python

scripts to cleaning all the data into a specific form. In HMM

Features Space Training component, we build HMM models

based on the data obtained in the first part, and compute the

likelihood vectors between applications and the typical

applications. In the Malicious Application Detection part, we

demonstrate how to use RRNS algorithm to generate malicious

applications vectors and malwares detection according to its

vector space.

A. Data Pre-processing

Our model is trained by API data of mobile applications,

in order to study the application behaviors, especially for the

normal applications, API invoking is a good way to observe

details of the application actions when it is running. However,

those API data are usually invisible in the operation system，

we develop a tool to record the API invoking and its

parameter value, and then sparse log file by time tags.

1) Real-time API data collection

We already have some research experiences [22] on tracing

real-time API calling data on Android device with an open

source project Xposed framework1. Based on this project, we

develop an Android API monitor2, detecting and recording

real-time API data. The structure of this module is manifested

in Fig 2.

When user interact with an application, the app will invoke

some system API. Our API monitor can hook system API,

insert our code and get the inserted code executed each time

when the API invoked by the application. After we hooked an

API, each time an application invokes it we can run our own

code to modify and record the parameters, and then output the

data into a log file.

The length of time to collect data denoted as 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ,

counting in seconds. We denote the set of monitored API as

𝑆𝐴𝑃𝐼 and the number of APIs in 𝑆𝐴𝑃𝐼 as 𝑛. We analyze all the

APIs and choose 38 most representative APIs, adding them into

𝑆𝐴𝑃𝐼 . Android API monitor can record all the calling of APIs in

𝑆𝐴𝑃𝐼 for 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 seconds in log files. Each record in log files

consists of time stamp, package name and calling API

information etc., log files are sent to our local server through

http protocol.

2) Time series data production

The structure of this part is illustrated in Fig 3. The input

of this part is log files of applications. Time series data

production consists log files slicing by time and API

frequency counting. The output of this component is An m×
n Matric 𝑀𝑡.

In log files slicing process we split log file into 𝑚 slices by

time interval denoted as ∆𝑡. 𝑚 = 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡/∆𝑡. Time stamp of

each record in log file makes the slice processing much

easier. In API frequency counting process, we compute the

frequency of each API in 𝑆𝐴𝑃𝐼 respectively. The 𝑖 − 𝑡ℎ slice

will generate a vector 𝐶𝑖, 𝑖 = 1, … , 𝑚. The output 𝑀𝑡 is

1 https://github.com/rovo89/Xposed
2 The code can be found here:
https://github.com/donggobler/Sensitive_API_Monitor

Fig. 1. Framework of RT-MAD model

Fig. 2. Real-time API data collection component

Fig. 3. Structure of Data Processing

https://github.com/rovo89/Xposed
https://github.com/donggobler/Sensitive_API_Monitor

 3

composed of all 𝐶𝑖. The pseudo-code of generating 𝑀𝑡 is

given in Table I.

𝑚𝑎𝑝𝐴𝑃𝐼(𝑁) = {

0 𝑁 = 0
1 𝑁 ∈ (0, 𝛿𝐴𝑃𝐼]

2 𝑁 ∈ (𝛿𝐴𝑃𝐼 , +∞]
 (1)

For each API in 𝑆𝐴𝑃𝐼 has a unique mapping function

𝑚𝑎𝑝𝐴𝑃𝐼 . The value of 𝑚𝑎𝑝𝐴𝑃𝐼(𝑁) = 0 means this API does

not occur in the period we monitored, 1 means this API

appear but in a normal frequency, and we denote the line of

the normal number as 𝛿𝐴𝑃𝐼. Excessive invoked of an API can

cause the value of 𝑚𝑎𝑝𝐴𝑃𝐼(𝑁) = 2. 𝛿𝐴𝑃𝐼 in (1) is different

for each mapping function.

B. HMM Features Space Training

According to API invoking data, we describe an application

in four states: normal, slight malicious, malicious, serious

malicious. In this situation, an application can be a combination

of four states in specific time. For example, with time goes by,

the state of an application would transform from normal to

slight malicious and then, in next period, back to normal again.

Applications from same typical class have similar state

transformation, however, we can’t observe four states of

transformation directly. In a hidden Markov model, the

sequence of tokens generated by an HMM gives some

information about the sequence of states. Therefore, by using

HMM, we can deduce application’s hidden states from its API

invoking data, and we can also compute similarity between an

application and a typical class of applications.

HMM Features Space Training model consists of HMM

training and likelihood vectors computing units. The HMM

training unit uses time series data 𝑀𝑡and Baum-Welch[20]

algorithm to build HMM[19]. The likelihood vectors

computing unit uses forward algorithm [19] to calculate

likelihood vector. The structure of HMM Features Space

Training module is given in Fig 4.

We use the compact notation λ𝑡 = 〈𝑆, 𝑉, 𝐴𝑡 , 𝐵𝑡 , Π𝑡〉 to

indicate the complete parameter set of the 𝐻𝑀𝑀𝑡,t ∈ [1, k].
The meaning of each notation is given in Table II. All HMM

have the same 𝑆 and 𝑉.

One application from an app store has always been labeled

with one or more classes. We have surveyed abundant app

stores and choose 𝐾 classes as fundamental classes (FC). Every

fundamental class has 𝐽 applications as typical applications

(TA).All TA are normal applications.

HMM Features Space Training module can produce 𝐾

HMM for 𝐾 FC in HMM Training unit. FC’s HMM is built

with 𝑀𝑡 of all 𝐽 TA belong to it. Every HMM can be described

as a kind of application’s running behaviors. To build an HMM

of a FC, we regard each vector in 𝑀𝑡 as observable outputs,

which can be characterized as signal produced by application.

According to the formula (1), 𝑉 = {0,1,2}𝑛 . We set 𝑆 = 4 and

use Baum-Welch algorithm to optimize 𝐴𝑡 , 𝐵𝑡 .

Likelihood vectors computing unit uses application’s 𝑀𝑡

and 𝐾 HMM to produce likelihood vector 𝐿 = [𝑙1, 𝑙2, … , 𝑙𝑘]
with forward algorithm. Each element in 𝐿 represents the

degree of similarity between the application and a T. In

consideration of likelihood value could be ranged in

(−∞, +∞), each element in L should be normalized (2). The

higher absolute value of likelihood can represent the better

similarity between application and TC. In (2) when 𝑙𝑖 is close

to ±∞, after normalization, its value close to 1. If 𝑙𝑖 = 0, after

normalization, its value is still zero. After normalization 𝑙𝑖 ∈
[0,1), 𝑖 = 1,2, … , 𝑘.

𝐿 = 𝐿′ = {1 − 𝑒−|𝑙𝑖||𝑙𝑖 ∈ 𝐿} (2)

C. Malicious Application Detection

The malicious application detection procedure consists of

auto-produce malicious vector process and application vector

testing process. The first process produced malicious likelihood

vector using normal application’s likelihood vector with RRNS

(randomized real-valued negative selection, RRNS). The

application vector testing process detecting malicious

application.

1) Auto-produce malicious vector

The structure of this module is given in Fig . 5. This

module saves all normal application’s likelihood vector into

TABLE I

DATA PROCESSING ALGORITHM

Input(logfile)

 Init Mt=[]

 Split logfile into m slices
 For each slice in slices:

 C=[]

 For each API in SAPI:
 Num=0

 For each record in slice:

 If record contains API:
 Num=Num+1

 End If

 Num=mapAPI(Num) -------Eq(1)
 C= C.append(Num)

 Mt.append(C)

Return Mt

Fig. 4. Structure of HMM Features Space Training

TABLE II

NOTATION OF HMM

λ𝑡 = 〈𝑆, 𝑉, 𝐴𝑡, 𝐵𝑡 , Π𝑡〉
𝑆: a set of hidden states of HMM

𝑉: possible observed result set 𝑉 = {0,1,2}𝑛

𝐴𝑡: State transition probability matrix 𝐻𝑀𝑀𝑡

𝐵𝑡: Observation probability matrix 𝐻𝑀𝑀𝑡

Π𝑡: Initial probability matrix of 𝐻𝑀𝑀𝑡

Fig. 5. Auto-produce malicious vector module

 4

a database and generate malicious likelihood vector. The

algorithm used in auto-produce malicious vector is RRNS.

To construct normal vector database, we need abundant of

normal application’s likelihood vectors. We assume the

number of normal application is 𝑛𝑢𝑚𝑛𝑜𝑟𝑚𝑎𝑙 . So the size of

normal vector database is 𝑛𝑢𝑚𝑛𝑜𝑟𝑚𝑎𝑙 × 𝐾.The data type

can be txt、excel or database system.

RRNS algorithm need normal set、𝑟𝑠𝑒𝑙𝑓 、𝑟𝑚 and other

parameters [18]. 𝑟𝑠𝑒𝑙𝑓 means normal application’s likelihood

vector’s radius. 𝑟𝑚 means malicious application’s likelihood

vector’s radius. RRNS uses normal vector to estimate

volume of malicious space and auto generate a set of

malicious sample that cover the malicious space. The

effective volume covered by a malicious sample with a

radius 𝑟𝑚 is define as[18]:

𝑉𝑑 = (
2𝑟𝑚

√𝐾
)

𝑘

 (3)

If let 𝑉𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 be the volume of malicious space. A rough

approximation of the number of malicious vector can be given

by [18]:

𝑛𝑢𝑚𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 =
 𝑉𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝑉𝑑

 (4)

In (4), we can estimate the number of vector in malicious

database and the size of malicious database is 𝑛𝑢𝑚𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ×
K. The flow of RRNS is given in fig 6.

An optimize function in formula (5) is adopted in the step 4

of figure 6:

C(D) = Overlapping(D) + β ∙ SelfCovering(D) (5)

Overlapping(𝑑𝑖 , 𝑑𝑗) = 𝑒

−‖𝑑𝑖−𝑑𝑗‖
2

𝑟𝑚
2

 (6)

Overlapping(D) = ∑ 𝑒

−‖𝑑𝑖−𝑑𝑗‖
2

𝑟𝑚
2

𝑖≠𝑗

, 𝑖, 𝑗 = 1 … 𝑛𝑢𝑚𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠(7)

NormCovering(D) = ∑ ∑ 𝑒

−‖𝑑−𝑠‖2

(
𝑟𝑠𝑒𝑙𝑓+𝑟𝑚

2
)

2

𝑑∈𝐷𝑠∈𝑆′

 (8)

In(5,6,7,8), D represents malicious vector database, 𝑑𝑖 and

𝑑𝑗 are vectors in it. 𝑆′ in our model is normal vector database

and 𝑠 is vector in it. Our goal in step 4 is to get a minimum

C(D). Overlapping(D) approximate measure of overlapping

between different two detectors in D . Minimize

Overlapping(D) can larger the distance between two vectors in

D. As the same, minimize NormCovering(D) can also larger

distance between malicious vector and normal vector.

Parameter β can adjust or balance this two function’s weight.

2) Application Vector Testing

In this process, minimum Euclidean distance between testing

application and malicious database is calculated and we

compare the minimum Euclidean distance and radius of

malicious database to detect malicious applications. The

detection algorithm is presented in Table III, and the

application vector testing module is given in Fig 7.

 By using likelihood vector 𝐿 and malicious vector database,

we can judge the software if it is a malware or not. We denote

𝑑𝑚𝑖𝑛 as minimum Euclidean distance between 𝐿 and D .

Compare the value of 𝑑𝑚𝑖𝑛 and 𝑟𝑚 to get an output. If the

output is 1，it represents the test application is malware and 0

means the application is normal.

III. EMPIRICAL EVALUATION

 We use 3600 applications in this experiment. We download

3000 normal application from Google Play3 and other app store.

We collect 500 malicious applications in our usual work, and

choose 20 typical classes (TABLE IV), each typical class

includes download 5 typical applications.

We selected 38 important system API of android to be 𝑆𝐴𝑃𝐼

in our Xposed module. APIs we studied here cover behaviors of

network, file, database, camera, contact, message, call and

3 https://play.google.com

Fig. 6. The flow of RRNS

Fig. 7. The structure of Application Vector Testing

TABLE III
 DETECTION ALGORITHM

Input(L,D), 𝑟𝑎𝑏):

 𝑑𝑚𝑖𝑛 = +∞
 For each d in D:

 If 𝑑𝑚𝑖𝑛> Euclidean(L,d):

 𝑑𝑚𝑖𝑛= Euclidean(L,d)
 End If

 If 𝑑𝑚𝑖𝑛>𝑟𝑎𝑏:
 Output(0)
 Else

Output(1)

 End If
End

TABLE IV

20 TYPICAL CLASSES OF APPLICATION

Music Photo News Games

Education Books Health Video

productivity Shopping Social travel
weather business Finance Kids

Food Sports Entertainment Utilities

 5

media etc. In our experiment, we set 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = 600 , ∆𝑡 = 10,

and then we implement our own RRNS algorithm in Python4.

A. RT-MDA Data Preprocessing

We use 5 android devices run our application simultaneously.

Each time we run single application on one devices. To collect

the data comprehensively, we have 5 users interact with those

our testing mobile phones respectively.

For typical applications, each user run them once, as for

other 3500 applications, we execute one time by a specific user

from 5 users. The details are showed in fig 8.

3600 applications are divided into three parts according to

their function. The partition is given in Fig 9.

2500 of 3000 normal applications are used to build normal

vector database D . 500 normal and 500 malicious applications

are used to be our test application. 100 typical applications are

used to build our HMM. We save all log files into our local

server.

We process all log files into time series data and save them

into txt file. The time series data’s form is given in Fig 10.

Every application’s log file will be ended up in this form. Each

row in Fig 10 represents a Statistical results of an application

behaviors in 10 seconds. Every application has 60 rows in

their time series data file. Adjacent rows represent adjacent

time periods. Each element of one row reflect one API appear

frequency (show up times after mapping function).

4 https://github.com/xvshiting/RRNS

B. HMM Evaluation

We use all typical application’s time series data to build 20

HMMs. Each HMM represent a kind of application’s pattern.

Hmmlearn 5package of python is used in this process. This

package can build HMM and can also save and load HMM. We

set hidden state of our all HMM is 4. We also use hmmlearn

package and our HMM to generate original likelihood vector of

2500 applications. The likelihood vector of an application L is

given in Fig 11.

To evaluate our HMM, we use our 20 HMMs to construct a

classifier and evaluate its ability of classification. The

classification method is that given an application, we calculate

its likelihood vector with our HMM, and denote the index of

max element in L as its class (9).

class = {index|𝑙𝑖𝑛𝑑𝑒𝑥 ≥ 𝑙𝑖 , ∀𝑙𝑖 ∈ 𝐿} (9)

 We download another 400 applications from app store, each

typical class has 20 of them. We labeled them and use our

HMM classifier to make a predict. The probability of correct

classification of those applications can evaluate classification

ability of HMM. Number of correctly classified of each typical

class is given in Fig 12.

The classification precise rate of our HMM classifier is 64%.

For some classes it can up to 85% such as music and games.

The results show that our HMM is effective and can be used to

generate normal likelihood vector.

C. Evaluation of Malicious Vector Space Generating

 We use RRNS and 1500 normalized likelihood vector of

normal applications to produce our malicious likelihood vector

space. We choose multi group parameters(𝑟𝑚 , 𝑟𝑎𝑏) in RRNS .

We generate many different malicious likelihood vector spaces

according to different parameters. We use algorithm in table III

to classify labeled test application. According to predict result,

we use precision and recall to evaluate the classification effect

of those Malicious vector space.

5 https://pypi.python.org/pypi/hmmlearn

Fig. 8. Difference between typical and other application

Fig. 9 The partition of 2600 application

Fig. 10 Time series data of one application

Fig. 11 . likelihood vector of application

Fig. 12 Correctly classified number of 20 classes

https://github.com/xvshiting/RRNS

 6

 Precision is also referred to as positive predictive value. In

classification task, the precision for a class is the number of true

positives divided by the total number of elements labeled as

belonging to the positive class. Its formula is given below (10).

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10)

Recall is also referred to as the true positive rate or

sensitivity. The recall for a class is number of true positives

divided by the total number of elements that actually belong to

the positive class(true positives and false negatives). The

formula is given below (11).

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11)

The precision and recall of different 𝑟𝑚 and 𝑟𝑎𝑏 is showing

in table V. Our model gets good precision and recall rate 92%

and 90% respectively when its 𝑟𝑚 = 0.3, 𝑟𝑎𝑏 = 0.4.

 In paper [21], the author proposes a method use RNS

(Real-Valued Negative Selection, RNS) and static features to

generate malicious vector space. Its detection effect is given in

Table VI.

Paper [16] uses HMM and SVM to detect malware and its

result is given in Table VII.

 Compare our result with those two previous works, we find

out that our model has a better performance in malicious

application detection. Contrast with the approach in paper [16] ，
our method do not need malwares, which solve the difficulty of

collecting malicious applications.

IV. RELATED WORK

In this section we introduce some existing methods of

malicious application detection [16,21] and an approach of

monitor application behavior [22], as well as an optimized RNS

algorithms [18], analyzing how our model distinguishes the

previous work.

Monitor system calling is an important problem in our

method. In paper [22], the author has introduced a method

using Xposed to monitor application’s malicious behavior. In

this paper, the author use MonkeyRunner6 to achieve the goal

of auto install, uninstall, click application. They also give us the

solution of use Xposed to monitor system API and record those

calling information into a log file. They execute an experiment

to evaluate their model. In their experiment, they find out

almost all sensitive API calling behavior of 1000 applications.

Using HMM in malicious application detection is novel

approach. The author of paper [16] proposed an approach of

how to combine dynamic behavior of android and HMM to

detect malicious application. In tthis paper, the author tries to

build a model for each fundamental behavior such as network

and memory. They also use HMM to get likelihood vector of an

application. Then the author use labeled data to train a SVM.

The trained SVM is used to classify normal and malicious

application. This HMM-SVM detection model got a 90% recall

and 13% false positive rate. This paper gives us a hint on using

dynamic behavior. But the disadvantage of this method is that

it need abundant malwares. It’s difficult for us to get newest

malicious application database with the android system update.

 To address inadequate malwares problem. In paper [21], they

present an approach of using normal application to detect

malicious behavior. The main idea of this paper is the RNS

algorithm. RNS is widely used in abnormal behavior detection

area. They collect static features of normal application and

filter out useless features to get normal vectors. Then they use

RNS and normal vector to produce malicious vectors. The

minimize distance is calculated between vector of test

application and all malicious vectors. At last, they compare

minimize distance with the radius of malicious vector to make a

classification. They also get a better correct rate 90.8% and low

error rate 9.2%. Using normal application to detect malware is a

novel approach and we also use this method.

 We use an optimized RNS algorithm named RRNS. In paper

[18], they propose RRNS and introduce the detail of this

algorithm. RRNS can make a good estimate of optimal number

of detector to cover malicious space. They proposed method is

a randomized algorithm based on Monte Carlo methods. They

also compare RRNS with RNS and find the front one has better

performance.

V. CONCLUSION

In this paper, we introduce a novel malicious application

detection model. The model can collect real-time API data from

an Android device, since the malicious application behavior is

difficult to be modeled, our method gives a way to model the

malicious applications space by studying the normal

application behaviors, and these behaviors are presented in API

data. The experiment we conducted shows that our detection

model can achieve a high precision of typical application

recognition, and by analyzing the relation between the test

application and typical applications, our malicious application

generation algorithm can get a reasonable malwares space,

which can be used for malicious application detection. In this

approach, we do not need the malicious application sample to

train the model, distinguished the previous work. Although in

some cases, the model would group a normal application into

6 http://www.android-doc.com/tools/help/monkeyrunner_concepts.html

TABLE V

PRECISION AND RECALL OF DIFFERENT PARAMETERS

Parameter

Group
Number

𝑟𝑚 𝑟𝑎𝑏 PRECISION RECALL

1 0.3 0.4 92% 90%

2 0.4 0.4 85% 89%

3 0.5 0.3 87% 86%

4 0.5 0.2 90% 84%

TABLE VI
PAPER [21] DETECTION EFFECT

 Error rate Correct rate

normal 9.5% 90.5%

malicious 9% 91%

total 9.2% 90.8%

TABLE VII
PAPER [16] DETECTION EFFECT

 Recall False positive rate

Total 90% 13%

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors

 7

the malicious one, for all the malwares, they are correctly

identified by our model.

In future, our work will focus on analysis the malicious

likelihood vector database generated by RRNS. We will focus

on improving the classification accuracy of our HMM. We will

consider add more dynamic feature of Android devices into our

model such as network and memory.

VI. ACKNOWLEDGMENT

We thank our experiment participants for their time and

helpful comments. This work is supported by National

High-tech R&D Program (863 Program) (2015AA017202).

REFERENCES

[1] Smartphone OS Market Share 2015 Q2 [Online]. Available:

http://www.idc.com/ prodserv/smartphone-os-market-share.jsp

[2] Sahs, Justin, and L. Khan. "A Machine Learning Approach to Android
Malware Detection." Intelligence and Security Informatics Conference

IEEE, 2012:141-147.

[3] Zhou, Yajin, and X. Jiang. "Dissecting Android Malware:
Characterization and Evolution." IEEE Symposium on Security & Privacy

IEEE, 2012:95-109.

[4] Huang, Chun Ying, Y. T. Tsai, and C. H. Hsu. Performance Evaluation
on Permission-Based Detection for Android Malware. Advances in

Intelligent Systems and Applications - Volume 2. Springer Berlin

Heidelberg, 2013:111-120.
[5] Chan, Patrick P. K., and W. K. Song. "Static detection of Android

malware by using permissions and API calls." 1(2015):82-87.

[6] Firdausi, Ivan, et al. "Analysis of Machine learning Techniques Used in
Behavior-Based Malware Detection." International Conference on

Advances in Computing IEEE Computer Society, 2010:201-203.

[7] Feng, Yu, et al. "Apposcopy: semantics-based detection of Android
malware through static analysis." The, ACM Sigsoft International

Symposium 2014:576-587.

[8] Rhee, Junghwan, et al. "Kernel Malware Analysis with Un-tampered and
Temporal Views of Dynamic Kernel Memory." Recent Advances in

Intrusion Detection, International Symposium, RAID 2010, Ottawa,

Ontario, Canada, September 15-17, 2010. Proceedings 2010:178-197.
[9] Channakeshava, Karthik, et al. "High Performance Scalable and

Expressive Modeling Environment to Study Mobile Malware in Large

Dynamic Networks." IEEE International Parallel & Distributed
Processing Symposium IEEE Computer Society, 2011:770-781.

[10] Zhao, Min, et al. "AntiMalDroid: An Efficient SVM-Based Malware

Detection Framework for Android." International Conference
2011:158-166.

[11] Yerima, S. Y., S. Sezer, and I. Muttik. "High accuracy android malware

detection using ensemble learning." Information Security Iet
9.6(2015):313-320.

[12] Burguera, Iker, U. Zurutuza, and S. Nadjm-Tehrani. "Crowdroid:
behavior-based malware detection system for Android." ACM Workshop

on Security and Privacy in Smartphones and Mobile Devices 2011:15-26.

[13] Min, Luo Xu, and Q. H. Cao. "Runtime-Based Behavior Dynamic

Analysis System for Android Malware Detection." Advanced Materials

Research 756-759(2013):2220-2225.

[14] Canfora, Gerardo, et al. "Detecting Android malware using sequences of
system calls." International Workshop on Software Development

Lifecycle for Mobile Esec/fse 2015:13-20.

[15] Xiao, Xi, et al. "Back-propagation neural network on Markov chains from
system call sequences: a new approach for detecting Android malware

with system call sequences." Iet Information Security (2016).

[16] Dong, H., et al. "A detection model of malware behaviors on android."

Journal of Beijing University of Posts and Telecommunications（2014）.

[17] Wei, Yu, et al. "On behavior-based detection of malware on Android

platform." GLOBECOM 2013 - 2013 IEEE Global Communications
Conference 2013:814-819.

[18] Gonzlez, Fabio, et al. "A Randomized Real-Valued Negative Selection."

(2004).

[19] Schuster‐Böckler, Benjamin, and A. Bateman. "An Introduction to

Hidden Markov Models." Appendix 3.Appendix 3(2007):4 - 16.

[20] Welch, and R. Lloyd. "Hidden Markov Models and the Baum-Welch

Algorithm." IEEE Information Theory Society Newsletter
53.2(2003):194-211.

[21] XIE Li-xia,ZHAO Bin-bin. “Malware detection of Android system based

on benign samples “ Computer Enginerring and Design 2016, 37(5).
[22] Wang Sai, Guo Yanhui, Wu Qiuxin, Liu Yuandong.” A detection method

of Android application malicious behaviors based on Xposed framework.”

(2015).

http://www.idc.com/

	I. INTRODUCTION
	II. RT-MAD Modeling
	A. Data Pre-processing
	1) Real-time API data collection
	2) Time series data production

	B. HMM Features Space Training
	C. Malicious Application Detection
	1) Auto-produce malicious vector
	2) Application Vector Testing

	III. Empirical evaluation
	A. RT-MDA Data Preprocessing
	B. HMM Evaluation
	C. Evaluation of Malicious Vector Space Generating

	IV. related work
	V. Conclusion
	VI. Acknowledgment
	References

