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Abstract—There are various malicious applications (app) in 

mobile platform, especially for Android devices, it is difficult to 

develop a model directly for malwares, due to the limitation of 

application testing samples. In this paper we propose a novel 

malicious application detection model RT-MAD for Android 

devices: Real-Time Malicious Application Detection. This model 

can generate a malicious app space through normal application 

modeling by (i) first we develop an Android Real-time API 

monitor tool to collect API data for each app running on the 

devices, and cleaning them into time series data, (ii) then we 

modify Hidden Markov Model (HMM) to train the majority 

genres of normal apps, obtaining the normal apps space, (iii) and 

finally we use Randomized Real-Valued Negative Selection 

(RRNS) to generate a set of likelihood vectors based on the normal 

app space, covering all possible malicious applications, thus we get 

the malicious app space for malwares detection. We conduct 

experiments on HMM training and RRNS malicious apps space 

generation, the result shows that we can get precision of 91% for 

normal genres of apps in HMM model. However, in some 

situation, the malicious apps space generated in RRNS would 

cover the normal apps, for the safety of devices, it is acceptable 

since our RT-MAD can achieve precision of 96% in malwares 

detection. 

 
Keywords—Android Malware Dynamic Detection, API 

Monitor, HMM, RRNS 

 

I. INTRODUCTION 

n recent years, there has been a gradual improvement in 

smartphone adoption. According to IDC [1], Android owned 

82.8% of the global smartphone market in 2015 Q2. It also 

dominated the smartphone market with 84.8% in 2014 Q2. At 

the same time the number of malware is also increasing, it can 

cause adverse effect on user’s daily life. Although there are a 

number of ways to help distinguish between normal and 

abnormal applications, but how to detect malicious applications 

accurately and efficiently is still an open question [3]. 

 Android malware detection methods are mainly divided into 

static analysis and dynamic detections. Machine learning 

methods are widely used in both of them. [2], the difference 

between static analysis and dynamic detections is the different 

information collected, which are used as identifying features in 

detection models. For static analysis， the approaches are 

usually focused on permission requests called by apps [4], and 

there are some other methods use both permission and API 

calling as features [5]. Semantics-based detection method [7] 

also widely used in static analysis. The advantage of static 

detection is high efficiency but when the application’s 

developers adopt the technology of obscured or anti-unpack 

this method would be invalid. With respect to dynamic 

detection, in our previous work, we developed a method to 

detect malicious apps by collecting behaviors data of 

applications running on devices [8]. Generally, the dynamic 

data refers to API invoking, mobile data connecting and 

memory consuming etc. In recent literatures, machine Learning 

algorithms have been used in malware detection [6] include: 

SVM [10] (Support Vector Machine, SVM), NBM (Naive 

Bayesian Model, NBM), GBDT (Gradsaient Boost Decision 

Tree, GBDT), Decision Tree or ensemble learning method [11] 

etc.  

There has been many research on the Real-time dynamic 

detection. Iker Burguera and Urko Zurutuza present a Beha- 

vior-Based Malware Detection System for Android named 

Cro-wdroid [12]. In this system they use a tool available in 

Linux called Strace to collect the system calls and then use a 

simple 2-means clustering algorithm to distinguish between 

normal application and abnormal application. The most 

important contribution of this work [12] is the mechanism they 

propose for obtaining real traces of application behavior. Luoxu 

Min proposes a runtime-based behavior dynamic analysis 

detection method [13]. In this method Android application run 

on the emulator to generate the run-time log file. Then they use 

the sematic analysis and regular expression technology to 

analyze the filtered log file. Gerardo Canfora’s approach take 

account all the system calls and they also consider sequence of 

system call [14]. Xiao Xi presents an approach for detecting 

Android malware with system call sequences based on Markov 

chains and Back-propagation neural network [15]. Dong 

Hang’s method [16] is the first time to adopt HMM (Hidden 

Markov Model, HMM) in dynamic detection. In his approach 

real-time network’s and memory’s information has been used 

to build feature. Y Wei capture the behavior of software, then 

use machine learning method to learn the dynamic behavior of 

malwares[17]. However, all dynamic detection methods from 

above literatures were try to construct detection model based on 

malwares, it is difficult to cover all malicious space due to the 

inadequate of malicious application. 
In this paper, we propose a novel dynamic detection model 

named RT-MAD (Real-Time Malicious Application Detection, 

RT-MAD), which can use real-time API data of an application 

to detect Android malware efficiently and accurately. Instead of 

study the malicious applications directly, RT-MAD modeling 

the normal applications that frequently used by people, and 

generates the abnormal space for malicious application 

detection. Fig 1 illustrates the framework of our model. 

I 
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RT-MAD model consists of five modules, in real-time API data 

collection module, we develop a tool to collect run-time API 

data of applications, and clean them in data processing module, 

generating time sequence data.  HMM features space training 

module has two components, the one is to build HMM modules 

with time sequence data of typical applications, and the other 

component is, by using HMM models we built respectively, to 

compute likelihood vectors between applications and the 

typical applications. Following, we adopt RRNS [18] 

(Randomized Real-Valued Negative Selection, RRNS) in 

auto-produce malicious vector module to construct a malicious 

vector database. Finally, in detection module, we calculate the 

minimum Euclidean distance between test application’s 

likelihood vector and the malicious vector database, identifying 

the current application is a malware or not.  

 

 
The remainder of this paper is structured as follows. Section 

II introduces our model in details. In Section III, we present 

experiments and evaluation of our model. Finally, related 

works are discussed in Section IV and we conclude our study in 

Section V. 

II. RT-MAD MODELING  

Our RT- MAD model consists of three parts: Data 

Pre-processing, HMM Features Space Training and Malicious 

Application Detection. For the data pre-processing, we firstly 

develop a tool to dynamically collect all the API data invoked 

by applications running in the device, and then we write python 

scripts to cleaning all the data into a specific form.  In HMM 

Features Space Training component, we build HMM models 

based on the data obtained in the first part, and compute the 

likelihood vectors between applications and the typical 

applications. In the Malicious Application Detection part, we 

demonstrate how to use RRNS algorithm to generate malicious 

applications vectors and malwares detection according to its 

vector space.  

A. Data Pre-processing 

Our model is trained by API data of mobile applications, 

in order to study the application behaviors, especially for the 

normal applications, API invoking is a good way to observe 

details of the application actions when it is running. However, 

those API data are usually invisible in the operation system， 

we develop a tool to record the API invoking and its 

parameter value, and then sparse log file by time tags.  

1) Real-time API data collection  

We already have some research experiences [22] on tracing 

real-time API calling data on Android device with an open 

source project Xposed framework1. Based on this project, we 

develop an Android API monitor2, detecting and recording 

real-time API data. The structure of this module is manifested 

in Fig 2.  

 
When user interact with an application, the app will invoke 

some system API. Our API monitor can hook system API, 

insert our code and get the inserted code executed each time 

when the API invoked by the application. After we hooked an 

API, each time an application invokes it we can run our own 

code to modify and record the parameters, and then output the 

data into a log file.  

The length of time to collect data denoted as 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 , 

counting in seconds. We denote the set of monitored API as 

𝑆𝐴𝑃𝐼  and the number of APIs in 𝑆𝐴𝑃𝐼  as 𝑛. We analyze all the 

APIs and choose 38 most representative APIs, adding them into 

𝑆𝐴𝑃𝐼 .  Android API monitor can record all the calling of APIs in 

𝑆𝐴𝑃𝐼  for 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡  seconds in log files. Each record in log files 

consists of time stamp, package name and calling API 

information etc., log files are sent to our local server through 

http protocol. 

2) Time series data production  

The structure of this part is illustrated in Fig 3. The input 

of this part is log files of applications. Time series data 

production consists log files slicing by time and API 

frequency counting. The output of this component is An m×
n Matric 𝑀𝑡. 

 
In log files slicing process we split log file into 𝑚 slices by 

time interval denoted as ∆𝑡. 𝑚 = 𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡/∆𝑡. Time stamp of 

each record in log file makes the slice processing much 

easier. In API frequency counting process, we compute the 

frequency of each API in 𝑆𝐴𝑃𝐼  respectively. The 𝑖 − 𝑡ℎ slice 

will generate a vector 𝐶𝑖, 𝑖 = 1, … , 𝑚. The output  𝑀𝑡 is 

 
1 https://github.com/rovo89/Xposed  
2 The code can be found here:  
https://github.com/donggobler/Sensitive_API_Monitor  

 
Fig. 1.   Framework of RT-MAD model 

 
Fig. 2.  Real-time API data collection component 

 
Fig. 3.  Structure of Data Processing  

https://github.com/rovo89/Xposed
https://github.com/donggobler/Sensitive_API_Monitor
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composed of all 𝐶𝑖. The pseudo-code of generating 𝑀𝑡 is 

given in Table I.  

 

𝑚𝑎𝑝𝐴𝑃𝐼(𝑁) = {

0                          𝑁 = 0
1              𝑁 ∈ (0, 𝛿𝐴𝑃𝐼]

2         𝑁 ∈ (𝛿𝐴𝑃𝐼 , +∞]
        (1) 

 

For each API in 𝑆𝐴𝑃𝐼  has a unique mapping function  

𝑚𝑎𝑝𝐴𝑃𝐼  . The value of 𝑚𝑎𝑝𝐴𝑃𝐼(𝑁) = 0  means this API does 

not occur in the period we monitored, 1 means this API 

appear but in a normal frequency, and we denote the line of 

the normal number as  𝛿𝐴𝑃𝐼. Excessive invoked of an API can 

cause the value of 𝑚𝑎𝑝𝐴𝑃𝐼(𝑁) = 2. 𝛿𝐴𝑃𝐼 in (1) is different 

for each mapping function.  

 

B. HMM Features Space Training  

According to API invoking data, we describe an application 

in four states: normal, slight malicious, malicious, serious 

malicious. In this situation, an application can be a combination 

of four states in specific time. For example, with time goes by, 

the state of an application would transform from normal to 

slight malicious and then, in next period, back to normal again. 

Applications from same typical class have similar state 

transformation, however, we can’t observe four states of 

transformation directly. In a hidden Markov model, the 

sequence of tokens generated by an HMM gives some 

information about the sequence of states. Therefore, by using 

HMM, we can deduce application’s hidden states from its API 

invoking data, and we can also compute similarity between an 

application and a typical class of applications. 

 
HMM Features Space Training model consists of HMM 

training and likelihood vectors computing units. The HMM 

training unit uses time series data 𝑀𝑡and Baum-Welch[20] 

algorithm to build HMM[19]. The likelihood vectors 

computing unit uses forward algorithm [19] to calculate 

likelihood vector. The structure of HMM Features Space 

Training module is given in Fig 4.  

We use the compact notation λ𝑡 = 〈𝑆, 𝑉, 𝐴𝑡 , 𝐵𝑡 , Π𝑡〉 to 

indicate the complete parameter set of the 𝐻𝑀𝑀𝑡,t ∈ [1, k]. 
The meaning of each notation is given in Table II. All HMM 

have the same 𝑆 and 𝑉.  

 
One application from an app store has always been labeled 

with one or more classes. We have surveyed abundant app 

stores and choose 𝐾 classes as fundamental classes (FC). Every 

fundamental class has 𝐽 applications as typical applications 

(TA).All TA are normal applications.  

HMM Features Space Training module can produce 𝐾 

HMM for 𝐾 FC in HMM Training unit. FC’s HMM is built 

with 𝑀𝑡 of  all 𝐽 TA belong to it. Every HMM can be described 

as a kind of application’s running behaviors. To build an HMM 

of a FC, we regard each vector in 𝑀𝑡 as observable outputs, 

which can be characterized as signal produced by application.  

According to the formula (1), 𝑉 = {0,1,2}𝑛 . We set 𝑆 = 4 and 

use Baum-Welch algorithm to optimize 𝐴𝑡 , 𝐵𝑡 . 

Likelihood vectors computing unit uses application’s  𝑀𝑡 

and 𝐾 HMM to produce likelihood vector 𝐿 = [𝑙1, 𝑙2, … , 𝑙𝑘] 
with forward algorithm. Each element in 𝐿 represents the 

degree of  similarity between the application and a T. In 

consideration of likelihood value could  be ranged in 

(−∞, +∞), each element in L should be normalized (2). The 

higher absolute value of likelihood can represent the better 

similarity between application and TC. In (2) when  𝑙𝑖 is close 

to ±∞, after normalization, its value close to 1. If  𝑙𝑖 = 0, after 

normalization, its value is still zero. After normalization   𝑙𝑖 ∈
[0,1), 𝑖 = 1,2, … , 𝑘. 

𝐿 = 𝐿′ = {1 − 𝑒−|𝑙𝑖||𝑙𝑖 ∈ 𝐿}     (2) 

C. Malicious Application Detection 

The malicious application detection procedure consists of 

auto-produce malicious vector process and application vector 

testing process. The first process produced malicious likelihood 

vector using normal application’s likelihood vector with RRNS 

(randomized real-valued negative selection, RRNS). The 

application vector testing process detecting malicious 

application. 

1) Auto-produce malicious vector 

 
The structure of this module is given in Fig . 5. This 

module saves all normal application’s likelihood vector into 

TABLE I 

DATA PROCESSING ALGORITHM 

Input(logfile) 

 Init Mt=[] 

 Split logfile into m slices 
 For each slice in slices: 

        C=[] 

  For each API in SAPI: 
          Num=0 

          For each record in slice: 

                   If record contains API: 
                        Num=Num+1 

                   End If 

          Num=mapAPI(Num)    -------Eq(1) 
          C= C.append(Num) 

  Mt.append(C) 

Return Mt 
 

 

 
Fig. 4.  Structure of HMM Features Space Training  

TABLE II 

NOTATION OF HMM 

λ𝑡 = 〈𝑆, 𝑉, 𝐴𝑡, 𝐵𝑡 , Π𝑡〉 
𝑆:      a set of hidden states of HMM   

𝑉:     possible observed result set     𝑉 = {0,1,2}𝑛 

𝐴𝑡:    State transition probability matrix 𝐻𝑀𝑀𝑡 

𝐵𝑡:   Observation probability matrix 𝐻𝑀𝑀𝑡 

Π𝑡:   Initial probability matrix of 𝐻𝑀𝑀𝑡 
  

 

 
Fig. 5.  Auto-produce malicious vector module 
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a database and generate malicious likelihood vector. The 

algorithm used in auto-produce malicious vector is RRNS.  

To construct normal vector database, we need abundant of 

normal application’s likelihood vectors. We assume the 

number of normal application is 𝑛𝑢𝑚𝑛𝑜𝑟𝑚𝑎𝑙 . So the size of 

normal vector  database is  𝑛𝑢𝑚𝑛𝑜𝑟𝑚𝑎𝑙   ×   𝐾.The data type 

can be txt、excel or database system. 

RRNS algorithm need normal set、𝑟𝑠𝑒𝑙𝑓  、𝑟𝑚 and other 

parameters [18]. 𝑟𝑠𝑒𝑙𝑓  means normal application’s likelihood 

vector’s radius. 𝑟𝑚 means malicious application’s likelihood 

vector’s radius. RRNS uses normal vector to estimate 

volume of malicious space and auto generate a set of 

malicious sample that cover the malicious space. The 

effective volume covered by a malicious sample with a 

radius 𝑟𝑚 is define as[18]: 

𝑉𝑑 = (
2𝑟𝑚

√𝐾
)

𝑘

    (3) 

If let 𝑉𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠  be the volume of  malicious space. A rough 

approximation of the number of malicious vector can be given 

by [18]: 

𝑛𝑢𝑚𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 =
 𝑉𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

𝑉𝑑

   (4) 

In (4), we can estimate the number of vector in malicious 

database and  the size of malicious database is 𝑛𝑢𝑚𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 ×
K. The flow of RRNS is given in fig 6. 

 
An optimize function in formula (5) is adopted in the step 4 

of figure 6: 

 

C(D) = Overlapping(D) + β ∙ SelfCovering(D)     (5) 

Overlapping(𝑑𝑖 , 𝑑𝑗) = 𝑒

−‖𝑑𝑖−𝑑𝑗‖
2

𝑟𝑚
2

           (6) 

Overlapping(D) = ∑ 𝑒

−‖𝑑𝑖−𝑑𝑗‖
2

𝑟𝑚
2

𝑖≠𝑗

, 𝑖, 𝑗 = 1 … 𝑛𝑢𝑚𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠(7) 

NormCovering(D) = ∑ ∑ 𝑒

−‖𝑑−𝑠‖2

(
𝑟𝑠𝑒𝑙𝑓+𝑟𝑚

2
)

2

𝑑∈𝐷𝑠∈𝑆′

           (8) 

In(5,6,7,8), D represents malicious vector database, 𝑑𝑖 and 

𝑑𝑗 are vectors in it. 𝑆′ in our model is normal vector database 

and 𝑠 is vector in it. Our goal in step 4 is to get a minimum 

C(D). Overlapping(D) approximate measure of overlapping 

between different two detectors in D . Minimize 

Overlapping(D) can larger the distance between two vectors in 

D. As the same, minimize NormCovering(D) can also larger 

distance between malicious vector and normal vector. 

Parameter β can adjust or balance this two function’s weight. 

2) Application Vector Testing 

In this process, minimum Euclidean distance between testing 

application and malicious database is calculated and we 

compare the minimum Euclidean distance and radius of 

malicious database to detect malicious applications. The 

detection algorithm is presented in Table III, and the 

application vector testing module is given in Fig 7. 

  
 By using likelihood vector 𝐿 and malicious vector database, 

we can  judge the software if it is a malware or not. We denote 

𝑑𝑚𝑖𝑛   as minimum Euclidean distance between 𝐿 and D . 

Compare the value of 𝑑𝑚𝑖𝑛 and 𝑟𝑚 to get an output. If the 

output is 1，it represents the test application is malware and 0 

means the application is normal. 

 

III. EMPIRICAL EVALUATION 

 We use 3600 applications in this experiment. We download 

3000 normal application from Google Play3 and other app store. 

We collect 500 malicious applications in our usual work, and 

choose 20 typical classes (TABLE IV), each typical class 

includes download 5 typical applications.  

 
We selected 38 important system API of android to be 𝑆𝐴𝑃𝐼  

in our Xposed module. APIs we studied here cover behaviors of 

network, file, database, camera, contact, message, call and 

 
3 https://play.google.com 

 
Fig. 6.  The flow of RRNS 

 
Fig. 7.  The structure of Application Vector Testing 

TABLE III 
 DETECTION ALGORITHM 

Input(L,D), 𝑟𝑎𝑏): 

          𝑑𝑚𝑖𝑛 = +∞ 
        For each  d in D: 

                If   𝑑𝑚𝑖𝑛> Euclidean(L,d): 

                                𝑑𝑚𝑖𝑛= Euclidean(L,d) 
                  End If 

        If  𝑑𝑚𝑖𝑛>𝑟𝑎𝑏: 
                 Output(0) 
        Else   

Output(1) 

        End If 
End 
 

 

TABLE IV 

20 TYPICAL CLASSES OF APPLICATION 

Music Photo News Games 

Education Books Health Video 

productivity Shopping Social  travel 
weather business Finance Kids 

Food Sports Entertainment Utilities 
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media etc. In our experiment, we set  𝑇𝑐𝑜𝑙𝑙𝑒𝑐𝑡 = 600 , ∆𝑡 = 10, 

and then we implement  our own RRNS algorithm in Python4.  

A. RT-MDA Data Preprocessing 

We use 5 android devices run our application simultaneously. 

Each time we run single application on one devices. To collect 

the data comprehensively, we have 5 users interact with those 

our testing mobile phones respectively.  

For typical applications, each user run them once, as for 

other 3500 applications, we execute one time by a specific user 

from 5 users. The details are showed in fig 8. 

  
3600 applications are divided into three parts according to 

their function. The partition is given in Fig 9.  

 
2500 of 3000 normal applications are used to build normal 

vector database D . 500 normal and 500 malicious applications 

are used to be our test application. 100 typical applications are 

used to build our HMM. We save all log files into our local 

server. 

We process all log files into time series data and save them 

into txt file. The time series data’s form is given in Fig 10. 

Every application’s log file will be ended up in this form. Each 

row in Fig 10 represents a Statistical results of an application 

behaviors in  10 seconds. Every application has 60 rows in 

their time series data file. Adjacent rows represent adjacent 

time periods. Each element of one row reflect one API appear 

frequency (show up times after mapping function). 

 

 
4 https://github.com/xvshiting/RRNS  

B. HMM Evaluation 

We use all typical application’s time series data to build 20 

HMMs. Each HMM represent a kind of application’s pattern. 

Hmmlearn 5package of python is used in  this process. This 

package can build HMM and can also save and load HMM.  We 

set hidden state of our all HMM is 4. We also use hmmlearn 

package and our HMM to generate original likelihood vector of 

2500 applications. The likelihood vector of an application L is 

given in Fig 11.   

 
To evaluate our HMM, we use our 20 HMMs to construct a 

classifier and evaluate its ability of classification. The 

classification method is that given an application, we calculate 

its likelihood vector with our HMM, and denote the index of 

max element in L as its class (9). 

class = {index|𝑙𝑖𝑛𝑑𝑒𝑥 ≥ 𝑙𝑖  , ∀𝑙𝑖 ∈ 𝐿} (9) 

  We download another 400 applications from app store, each 

typical class has 20 of them. We labeled them and use our 

HMM classifier to make a predict. The probability of correct 

classification of those applications can evaluate classification 

ability of HMM.  Number of correctly classified of each typical 

class is given in Fig 12. 

 
The classification precise rate of our HMM classifier is 64%. 

For some classes it can up to 85% such as music and games. 

The results show that our HMM is effective and can be used to 

generate normal likelihood vector. 

C. Evaluation of Malicious Vector Space Generating  

  We use RRNS and 1500 normalized likelihood vector of 

normal applications to produce our malicious likelihood vector 

space. We choose multi group  parameters(𝑟𝑚 , 𝑟𝑎𝑏) in RRNS . 

We generate many different malicious likelihood vector spaces 

according to different parameters. We use algorithm in table III 

to classify labeled test application. According to predict result, 

we use precision and recall to evaluate the classification effect 

of those Malicious vector space. 

 
5 https://pypi.python.org/pypi/hmmlearn 

 
 

Fig. 8.  Difference between typical and other application  

 
Fig. 9 The partition of 2600 application 

 
Fig. 10 Time series data of one application 

 

 
 

Fig. 11 . likelihood vector of application 

 

 
Fig. 12 Correctly classified number of 20 classes 

 

https://github.com/xvshiting/RRNS
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 Precision is also referred to as positive predictive value. In 

classification task, the precision for a class is the number of true 

positives divided by the total number of elements labeled as 

belonging to the positive class. Its formula is given below (10). 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     (10) 

Recall is also referred to as the true positive rate or 

sensitivity. The recall for a class is number of true positives 

divided by the total number of elements that actually belong to 

the positive class(true positives and false negatives). The 

formula is given below (11). 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (11) 

The precision and recall of different 𝑟𝑚  and 𝑟𝑎𝑏  is showing 

in table  V. Our model gets good precision and recall rate  92% 

and 90% respectively when its 𝑟𝑚 = 0.3, 𝑟𝑎𝑏 = 0.4.  

 
  In paper [21], the author proposes a method use RNS 

(Real-Valued Negative Selection, RNS) and static features to 

generate malicious vector space. Its detection effect is given in 

Table VI.  

 
Paper [16] uses HMM and SVM to detect malware and its 

result is given in Table VII. 

 
 Compare our result with those two previous works, we find 

out that our model has a better performance in malicious 

application detection. Contrast with the approach in paper [16] ，
our method do not need malwares, which solve the difficulty of 

collecting malicious applications.    

IV. RELATED WORK 

In this section we introduce some existing methods of 

malicious application detection [16,21] and an approach of 

monitor application behavior [22], as well as an optimized RNS 

algorithms [18], analyzing how our model distinguishes the 

previous work. 

Monitor system calling is an important problem in our 

method. In paper [22], the author has introduced a method 

using Xposed to monitor application’s malicious behavior. In 

this paper, the author use MonkeyRunner6 to achieve the goal 

of auto install, uninstall, click application. They also give us the 

solution of use Xposed to monitor system API and record those 

calling information into a log file. They execute an experiment 

to evaluate their model. In their experiment, they find out 

almost all sensitive API calling behavior of 1000 applications. 

Using HMM in malicious application detection is novel 

approach. The author of paper [16] proposed an approach of 

how to combine dynamic behavior of android and HMM to 

detect malicious application. In tthis paper, the author tries to 

build a model for each fundamental behavior such as network 

and memory. They also use HMM to get likelihood vector of an 

application. Then the author use labeled data to train a SVM. 

The trained SVM is used to classify normal and malicious 

application. This HMM-SVM detection model got a 90% recall 

and 13% false positive rate. This paper gives us a hint on using 

dynamic behavior.  But the disadvantage of this method is that 

it need abundant malwares. It’s difficult for us to get newest 

malicious application database with the android system update.  

 To address inadequate malwares problem. In paper [21], they 

present an approach of using normal application to detect 

malicious behavior. The main idea of this paper is the RNS 

algorithm. RNS is widely used in abnormal behavior detection 

area. They collect static features of normal application and 

filter out useless features to get normal vectors. Then they use 

RNS and normal vector to produce malicious vectors. The 

minimize distance is calculated between vector of test 

application and all malicious vectors. At last, they compare 

minimize distance with the radius of malicious vector to make a 

classification. They also get a better correct rate 90.8% and low 

error rate 9.2%. Using normal application to detect malware is a 

novel approach and we also use this method. 

  We use an optimized RNS algorithm named RRNS. In paper 

[18], they propose RRNS and introduce the detail of this 

algorithm. RRNS can make a good estimate of optimal number 

of detector to cover malicious space. They proposed method is 

a randomized algorithm based on Monte Carlo methods. They 

also compare RRNS with RNS and find the front one has better 

performance.  

V. CONCLUSION 

In this paper, we introduce a novel malicious application 

detection model. The model can collect real-time API data from 

an Android device, since the malicious application behavior is 

difficult to be modeled, our method gives a way to model the 

malicious applications space by studying the normal 

application behaviors, and these behaviors are presented in API 

data. The experiment we conducted shows that our detection 

model can achieve a high precision of typical application 

recognition, and by analyzing the relation between the test 

application and typical applications, our malicious application 

generation algorithm can get a reasonable malwares space, 

which can be used for malicious application detection. In this 

approach, we do not need the malicious application sample to 

train the model, distinguished the previous work. Although in 

some cases, the model would group a normal application into 

 
6 http://www.android-doc.com/tools/help/monkeyrunner_concepts.html 

TABLE V 

PRECISION AND RECALL OF DIFFERENT PARAMETERS 

Parameter 

Group 
Number 

𝑟𝑚  𝑟𝑎𝑏  PRECISION RECALL 

1 0.3 0.4 92% 90% 

2 0.4 0.4 85% 89% 

3 0.5 0.3 87% 86% 

4 0.5 0.2 90% 84% 
 

 

 

TABLE VI 
PAPER [21] DETECTION EFFECT 

 Error rate  Correct rate 

normal 9.5% 90.5% 

malicious 9% 91% 

total 9.2% 90.8% 
 

 

TABLE VII 
PAPER [16] DETECTION EFFECT 

 Recall False positive rate 

Total 90% 13% 
 

 

https://en.wikipedia.org/wiki/Positive_predictive_value
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Type_I_and_type_II_errors
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the malicious one, for all the malwares, they are correctly 

identified by our model. 

In future, our work will focus on analysis the malicious 

likelihood vector database generated by RRNS. We will focus 

on improving the classification accuracy of our HMM. We will 

consider add more dynamic feature of Android devices into our 

model such as network and memory. 

VI. ACKNOWLEDGMENT 

We thank our experiment participants for their time and 

helpful comments. This work is supported by National 

High-tech R&D Program (863 Program) (2015AA017202). 

 

REFERENCES 

[1] Smartphone OS Market Share 2015 Q2 [Online]. Available: 

http://www.idc.com/ prodserv/smartphone-os-market-share.jsp 

[2] Sahs, Justin, and L. Khan. "A Machine Learning Approach to Android 
Malware Detection." Intelligence and Security Informatics Conference 

IEEE, 2012:141-147. 

[3] Zhou, Yajin, and X. Jiang. "Dissecting Android Malware: 
Characterization and Evolution." IEEE Symposium on Security & Privacy 

IEEE, 2012:95-109. 

[4] Huang, Chun Ying, Y. T. Tsai, and C. H. Hsu. Performance Evaluation 
on Permission-Based Detection for Android Malware. Advances in 

Intelligent Systems and Applications - Volume 2. Springer Berlin 

Heidelberg, 2013:111-120.  
[5] Chan, Patrick P. K., and W. K. Song. "Static detection of Android 

malware by using permissions and API calls." 1(2015):82-87. 

[6] Firdausi, Ivan, et al. "Analysis of Machine learning Techniques Used in 
Behavior-Based Malware Detection." International Conference on 

Advances in Computing IEEE Computer Society, 2010:201-203. 

[7] Feng, Yu, et al. "Apposcopy: semantics-based detection of Android 
malware through static analysis." The, ACM Sigsoft International 

Symposium 2014:576-587. 

[8] Rhee, Junghwan, et al. "Kernel Malware Analysis with Un-tampered and 
Temporal Views of Dynamic Kernel Memory." Recent Advances in 

Intrusion Detection, International Symposium, RAID 2010, Ottawa, 

Ontario, Canada, September 15-17, 2010. Proceedings 2010:178-197. 
[9] Channakeshava, Karthik, et al. "High Performance Scalable and 

Expressive Modeling Environment to Study Mobile Malware in Large 

Dynamic Networks." IEEE International Parallel & Distributed 
Processing Symposium IEEE Computer Society, 2011:770-781. 

[10] Zhao, Min, et al. "AntiMalDroid: An Efficient SVM-Based Malware 

Detection Framework for Android." International Conference 
2011:158-166. 

[11] Yerima, S. Y., S. Sezer, and I. Muttik. "High accuracy android malware 

detection using ensemble learning." Information Security Iet 
9.6(2015):313-320. 

[12] Burguera, Iker, U. Zurutuza, and S. Nadjm-Tehrani. "Crowdroid: 
behavior-based malware detection system for Android." ACM Workshop 

on Security and Privacy in Smartphones and Mobile Devices 2011:15-26. 

[13] Min, Luo Xu, and Q. H. Cao. "Runtime-Based Behavior Dynamic 

Analysis System for Android Malware Detection." Advanced Materials 

Research 756-759(2013):2220-2225. 

[14] Canfora, Gerardo, et al. "Detecting Android malware using sequences of 
system calls." International Workshop on Software Development 

Lifecycle for Mobile Esec/fse 2015:13-20. 

[15] Xiao, Xi, et al. "Back-propagation neural network on Markov chains from 
system call sequences: a new approach for detecting Android malware 

with system call sequences." Iet Information Security (2016). 

[16] Dong, H., et al. "A detection model of malware behaviors on android." 

Journal of Beijing University of Posts and Telecommunications（2014）. 

[17] Wei, Yu, et al. "On behavior-based detection of malware on Android 

platform." GLOBECOM 2013 - 2013 IEEE Global Communications 
Conference 2013:814-819. 

[18] Gonzlez, Fabio, et al. "A Randomized Real-Valued Negative Selection." 

(2004). 

[19] Schuster‐Böckler, Benjamin, and A. Bateman. "An Introduction to 

Hidden Markov Models." Appendix 3.Appendix 3(2007):4 - 16. 

[20] Welch, and R. Lloyd. "Hidden Markov Models and the Baum-Welch 

Algorithm." IEEE Information Theory Society Newsletter 
53.2(2003):194-211. 

[21] XIE Li-xia,ZHAO Bin-bin. “Malware detection of Android system based 

on benign samples “  Computer Enginerring and Design 2016, 37(5). 
[22] Wang Sai, Guo Yanhui, Wu Qiuxin, Liu Yuandong.” A detection method 

of Android application malicious behaviors based on Xposed framework.” 

( 2015). 

http://www.idc.com/

	I. INTRODUCTION
	II. RT-MAD Modeling
	A. Data Pre-processing
	1) Real-time API data collection
	2) Time series data production

	B. HMM Features Space Training
	C. Malicious Application Detection
	1) Auto-produce malicious vector
	2) Application Vector Testing


	III. Empirical evaluation
	A. RT-MDA Data Preprocessing
	B. HMM Evaluation
	C. Evaluation of Malicious Vector Space Generating

	IV. related work
	V. Conclusion
	VI. Acknowledgment
	References

