
Kevin Johanson, Sam Larsen, Yuandong Cyrus Liu

Abstract Overview

VESC: Towards Temporal Verification of Smart Contracts

Blockchain technologies are applied in diverse domains 
such as financial systems, supply chains, and identity 
management, leading to the emergence of various smart 
contract languages design. These contracts often involve 
time dependent transactions recorded immutably on the 
blockchain, making their correctness crucial. This paper 
addresses the formal verification of temporal behaviors 
in smart contracts without human interaction. We study 
9 recent smart contract languages used in 7 leading 
blockchains and model 27 common temporal patterns 
from 2102 benchmarks across 9 domain-specific 
application categories. We introduce VESC, a temporal 
specification language that allows developers to specify 
temporal properties in structured natural language, 
which VESC compiles into formal linear temporal logic. 
Our experiments demonstrate that VESC effectively 
specifies common temporal behaviors, paving the way 
for automated temporal verification of smart contracts.

Acknowledgements
We would like to thank our MAP advisor, Cyrus Liu for his continuing aid in the 
development of this project.

VESC Specification Language and Implementation
VESC compiles front-end specification language to a linear 
temporal logic formula.

CSC 499
Yuandong Cyrus Liu

Summer 2024

Smart Contract Patterns

Temporal behaviors are generally easy to describe in natural 
language, however it's nontrivial to specify them precisely in 
formal logic which can be interpreted by the machine. 
Figure 1 shows the Speed Bump pattern from a smart 
contract. In the code snippet, line 7 WAIT_PERIOD is set 
to 7 days, at line 10, the withdraw function requires the 
current time to be greater than the time of the initial 
withdrawal request plus the wait period, in this case, seven 
days later. 

Figure 1: Example of a Speed Bump Security Pattern
VESC encodes the temporal properties of the code snippet 
above as simply Bump(time t). For this example, when we 
parse Bump(7 days), VESC compiles it into an LTL formula:

Figure 2: VESC Specification Language Grammar

Smart contract patterns are algorithms and solutions that 
appear frequently in blockchain code spaces. These 
patterns help developers by promoting the efficient reuse 
of code and design, as well as setting standards for 
security. Smart contract patterns can often be used across 
any blockchain and can be implemented in any language. 
We categorize these patterns into four major fields, 
security, efficiency, access control, and contract 
management.

This formula states 
that when the 
function 
(withdraw) is 
called, the 
transaction is 
stalled until the 
current time is 
seven days after 
the time of the 
initial call.

VESC’s grammar is defined as a list of expressions (expr). These 
expressions model the four key categories of patterns: Security, 
Efficiency, Access Control, and Contract Management. 
Each type of expression is broken down further into pattern 
constructs. Each pattern may take arguments in the form of numbers, 
time units, or addresses. A full description of VESC's grammar is 
described in Figure 2. Figure 3 shows VESC output results for each 
benchmark: the first column presents our VESC expressions, and the 
second column contains the LTL formulae that VESC compiles to.

Figure 3: VESC Sample Input/Output Results

Grammar

VESC Parser

LTL 
Formula


