Proving LTL Properties of Bitvector Programs

Abstract—There is increasing interest in applying verification
tools to programs that have bitvector operations. SMT solvers,
which serve as a foundation for these tools, have thus increased
support for bitvector reasoning through bit-blasting and linear
arithmetic approximations. Still, verification tools are limited on
termination and LTL verification of bitvector programs.

In this work, we show that similar linear arithmetic approx-
imation of bitvector operations can be done at the source level
through transformations. Specifically, we introduce new paths
that over-approximate bitvector operations with linear condi-
tions/constraints, increasing branching but allowing us to better
exploit the well-developed integer reasoning and interpolation of
verification tools. We present two sets of rules, namely rewriting
rules and weakening rules, that can be implemented as bitwise
branching of program transformation, the branching path can
facilitate verification tools widen verification tasks over bitvector
programs. Our experiment shows this exploitation of integer
reasoning and interpolation enables competitive termination
verification of bitvector programs and leads to the first effective
technique for LTL verification of bitvector programs.

Finally, for the cases that are not covered by our bitwise
branching rules, we explore a dynamic approach combined with
static analysis to tackle more complicated bitvector programs. We
execute the program and collect concrete traces in the locations
of interest, inferring program invariants from concrete traces,
these linear invariants can be used to approximate the bitwise
expressions, therefore the static analysis tools can reason about
the approximate programs and return the verification results.

Dynamic LTL Verification

LTL Property: G((xz > 0) = F(y ==0))

Concrete Traces
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Invariant —pre_x + x < —1 shows z is decreasing at bitwise location 9.

@ Locate bitvector expression, instrument source code with traces.
@ Compile source code, random sampling concrete traces.
@ Infer invariants at trace locations.

@ Replace bitwise expression with effective invariant, run with LTL verifier.
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Theory of Bitwise Branching

o Rewriting Rules: C Fg ey, ~ e;,: means under condition C

bitvector expression e, can be approx. with linear expression ;.

Problems

o Bit-blasting in SMT practical applications, leads to exponential
growth (O(2")).
o Verification tools (e.g. CPACHECKER, ULTIMATE) have limited

support for liveness verification over the bitvector domain.
LTL verification tasks are absent from SV-COMP.

o Very limited bitvector benchmarks in SV-COMP.

o Weakening Rules: C g sp, ~ sit means under condition C

bitvector statement sy, can be approx. with linear statement s;,;.

Linear Condition BV Expr. _Linear Apx
e1=0 Fp eikez =0 [R-AND-0]
(e1=0Vey=1)Aep=1 Fp erkey -~ e [R-AND-1]
(e1=0Ver=1)A(e2=0Ver=1) Fp eikes ~ eitkez  [R-AND-LOG]
e1>0Anea=1 Fp eikes ~ e12 L
e2=0 Fp elle — ey
(e1=0ver=1)Aea=1 Fp erle ~1
e2=0 Fp ertex ~ e
ex=0Ve =ey=1 Fp ee ~0
g ertes ~1
Fp  epdea =0
e1 <OAey =CHIRBIT + sizeof(e;) —1 Fp  ep>ey -1
Linear Condition BY STMT Linear Apx
e1>0Ae2>0 Fg 3
e1<0Aey <0 kg
e1>0Ae2<0 kg
(e1=0Ver=1)A(e2=0Ver=1) kg
e1 > 0 Aisconst(es) kg
e120Ae220 kg
e1<0Aex <0 kg & r>mey b r<0
e1>20Ae2<0 ks <0
e1>0Ae2 >0 kg
e1<0Aey <0 Fg
e1>0Ae2 <0 kg
e1>0 kg
e <0 kg
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Rules Application

e1>0Aes >0 Fg rop, elies ~ r<=e; && r<=e; [W-AND-PoOs]
1 a = *; 1 a = *; assume(a > 0);
2 assume(a>0); 2 while (x > 0) {
3 while(x>0){ 3 { = %:0.A a>0 }
4 d==5 4 a~—=;
5 X =x & aj; 5 if (x >= 0 & a >= 0)
6 } 6 then { x = *; assume(x <= a); }
7 else {x = x & a; }
@ Tools struggle. 8 3}

Termination and LTL Experiments

Termination Benchmarks

@ No SV-COMP benchmarks for term.

of bitvector programs.

o AProVE Benchmarks, although only
18/118 are bitvector programs.

@ 31 new benchmarks, adapted from

State-of-the-art Tools

Tool BitVec. | Term. | LTL
ULTIMATE Limited | Yes Yes
APROVE Yes Yes No
KITTEL Yes Yes No
CPACHECKER | Limited | Yes No
2LS Yes Yes No
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"Bit Hacks".
(ii) TermBitBench (i) AproveBench
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v (Terminating) 5 1 7 8 2 18 1 3 3 14 2 2
v (FN) T - = o= o= s o o= m s -

X (Nonterminating) 6 10 8 - 13 , .
X (FP) 2 7 5 = = - 10 2 6
?(Unknown) 14 13 - - 29 - 10 3 = 1 14 8
T (Time Out) 3 = 18 B2 « = 7 o= 1 2 s 1
M (Out of Memory) - - - - - - - -1 1
“* (Crash) - 5 - - - 2 5 - - -

o ULTIMATE, e.g., reports

Unknown.
o T:50AG>0 ° T':x>0/\a’:a71/\((12 Aa'>0A2'<a' )V
o T:2>0ANd=a—1A2'=z&d {~e=>-6-Aa"2>-6) =wia))

@ Tools fail to show:
INTA2'>0 = T’

@ Tools can prove that ZAT' A2'>0 = T/,
ranking function R(z,a) = a

Tools and Benchmarks

Example: (¢ =0(0(n < 0)))

Take Away: First
effective strategy
for termination of

bitvector programs.

@ No techniques can prove LTL of

Lenile(d) ¢ . bitvector programs. The closest
o = Ay B g R = Eelg & . pe .
3 while(x>0 & n>0) { possible verifier is ULTIMATE.
4 ntt;
5 y=xlm @ No LTL verification tasks in
g gt SV-COMP.
8 n = -1; . .
o) o Contribute BitHacks (26) and
LTLBitBench (42).
S (i) LTLBit
(iv) Bithacks Bench
ULTIMATE w. BwB  ULTIMATE w. BwB
v (Satisfied) 3 10 - 21
X (Unsatisfied) - 7 - 20
?(Unknown) 21 5 42
T (Time Out) 1 1 -
M (Out of Memory) 1 3 -

Take Away: First technique for verifying LTL of bitvector programs.




