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Abstract—Recent literatures have illustrated approaches that 
can automatically extract informative content from noisy mobile 
app reviews, however the key information such as feature 
requests, bug reports etc., retrieved by these methods are still 
mixed and what users really care about the app remains unknown 
to developers. In this paper we propose a novel model SAR: 
Stratify App Reviews, providing developers information about 
users’ real reaction toward apps. SAR stratifies informative 
reviews into different layers, grouping the reviews based on what 
users concern, and we also develop a method to compute the user 
general sentiment on each entity. The model performs user-
oriented analytics from raw reviews by (i) first extracting entities 
from each review, identifying hot entities of the app that users 
mostly care about, (ii) then stratifying all the reviews into different 
layers according to hot entities with a four-layer Bayes probability 
method, (iii) and finally computing user sentiments on hot entities. 
We conduct experiments on three genres of apps i.e. Games, 
Social, and Media, the result shows that SAR could identify 
different hot entities with respect to the specific categories of apps, 
and accordingly, it can stratify relevant reviews into different 
layers, the sentiment value of each entity can also represent users’ 
satisfaction well, we also compared the result with human analysis, 
with the similar accuracy, the SAR can speed up the overall 
analysis automatically. Our model can help developers quickly 
understand what entities of the app users mostly care about, and 
how do they react to these entities. 

Index Terms—App Review, Bayes Probability, Sentiment 
Computation, Entity. 

I. INTRODUCTION 
Recently, with the development of mobile Internet, mobile 

apps are thriving at large [16], which connect to everyone’s life. 
Users download apps from app stores, and write reviews to 
share their experience about the app performance, these reviews 
contain valuable information for app developers, also attract to 
latent users [2]. Therefore, finding valuable information from 
these noisy reviews is of importance for both developers and 
users. As apps updated periodically and new app released, the 
app reviews increased tremendously everyday [33].  In this 
case, human reading of these apps reviews would be tedious and 
time consuming. 

In order to improve users experience, reading app reviews is 
an effective way for developers to understand what users think 
about the app and what do they really need [14,17,18]. Recent 
works have proposed ways to extract informative content from 
raw reviews [3,12,39], such as extracting feature requests 
through linguistic rules [1], classifying reviews into different 
categories, also some works conduct sentiment analysis on 
these reviews to compute user’s satisfaction towards the app 

[5]. Some literatures also develop tools to help developers and 
users to find different types of reviews [35]. All these works 
have been recently conducted due to the high frequency of app 
using in daily life, applying nature language processing and 
machine learning algorithm. Previous works on app views 
mining mainly focus on the linear level of Natural Language 
Processing [38], mostly they concentrate on the key information 
extraction, filter the noisy and useless reviews, or using NLP 
technology divide them into different topics. When we look into 
different categories of apps such as Games, Education, and 
Media etc., those apps have quite different functions, and users 
focus on totally different aspects when writing reviews. The 
previous work [25] on these reviews can extract all the feature 
requests and classify them, but no further works have been 
conducted. Therefore, identifying hot entities most concerned 
by users toward different apps, and grouping the related reviews 
into fine grained topics would be an effective way for 
developers to understand users and to improve their apps. 
However, we find no research work in this perspective has been 
done, whereas a fine grained sentiment analysis on app reviews 
have been conducted [11], and also a tool developed for app 
reviews mining based on key words [37]. 

In this paper, we conduct a survey about the user preference 
among different categories of apps they use. We find out that 
users are more focused on the scenic design, graphics and sound 
effect of a game app, whereas for a social app, these would 
switch to sharing, loading, notification etc., also with respect to 
other type of apps, it would be other aspects. We denote these 
aspects as entities, there are a bunch of reviews written by users 
related to each entity. Entities would have the same type of bug 
reports or features requests, or function problem etc., for 
example, reviews from a social app like Facebook, with respect 
to UI design and Functions, users may have hundreds of 
reviews towards these two entities, which both have feature 
requests and bug reports, and details like remove or add the 
specific items. In this case, the recent work [21] extracts all 
reviews containing such information but still a bit noisy to 
figure out which entities users want to change most, and how 
users react to these entities remains unknown. Considering 
these two situations, we term the problem Stratify App 
Reviews, and based on the previous research we propose the 
solution model SAR.  

The model consists of three parts: hot entity discovery, 
stratifying reviews and entity sentiment analysis, the structure 
of SAR is showed in Fig. 1. Here we denote entity as the 
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combination of nouns that appear frequently in reviews, E-LDA 
is our modified topic model based on LDA model [4]. The three 
parts of our model we proposed can help developers quickly 
notice the most user-concerned entities, and go into the 
hierarchical group of reviews for the details, therefore 
developers can understand which aspects of the app should be 
improved and enhanced, as well as which parts that users are 
not fond of. With the sentimental value of each entity, 
developers can intuitively observe how users react to the app 
design. 

The remainder of this paper is structured as follows. Section 
II introduces hot entity discovery method. Section III describes 
stratified app reviews mining approach. Section IV presents the 
sentiment computing of each entity. Section V shows our 
empirical evaluation of SAR and case studies. Finally, related 
works are discussed in Section VI and we conclude our study 
in Section VII. 

II. HOT ENTITY DISCOVERY 
Generally, users writing reviews about different traits of an 

entity, the first step of SAR model is finding out those entities 
that mostly reviewed by users. The entity extraction from text 
set is the mainly studied filed in nature language process. We 
denote R as a set of all reviews from one specific app, using the 
Stanford Named Entity Recognizer1, we obtained all entities 
from R. Since most users are not professional in mobile app 
develop, when they writing reviews about one function or 
feature of the app, they might use different words to describe it, 
e.g., user would write picture review, photo download, and 
picture deleting about one social application, however in 
developer’s perspective, and these are relevant to one entity that 
is photo processing. 

 In order to make entities more representative and effectively 
describe the general aspects of an app design, we build a 
standard app develop entity dictionary based on the developer 
document 2 . The dictionary records standard specific 
components that a developer need to release a high quality app. 
We define all the data sets as follow: 

r

 = { the standard developer entities }
 = { entities of a review from R }

 = { Hot entitis of an app }
  denote the Word2Vec relation computing

s

hot k s

E
E
E E E= ∩
∩

    (1) 

 1 http://stanfordnlp.github.io/CoreNLP/ner.html  

The hot entity is the one that mostly concerned by users, this 
means high frequency of appearance in Er, we use Word2Vec, 
a distributed, vector-based representation of words [40], to 
compute the relationship of entities inside the dataset Er, as well 
as entities between Es and Er. By doing this, we are able to count 
the frequency of hot entity mentioned in (1), rank them and 
extract hot entities that have high value of relation with entity 
in Es. The entity discovery algorithm can be described in table 
I.  

For the entity that have high frequency in Er but low relation 
value, the algorithm would directly put it into Ehot. 

III. STRATIFY REVIEWS 
To stratify the reviews that are relevant to the entities found 

above, we modified the existing topic model Latent Dirichlet 
Allocation (LDA) [4], add an entity layer, we denote the model 
as Entity-LDA (E-LDA). In this approach, we are able to 
classify the reviews into different topics according to different 
entities, classifying all app reviews into topics according to 
entities that users mostly care about. Since the hot entity 
discovery algorithm would find entities that are mostly talked 
about by users in a specific period, E-LDA can help developers 
quickly figure out what need to be improved or modified about 
the app, which make developers much more competitive in the 
mobile marketplace. 

A. E-LDA Topic Model 
The topic model LDA is a probabilistic distribution 

algorithm which uses Gibbs sampling to assign topics to 
documents, and each topic is a probabilistic distribution over 
words, thus each document is modeled as a mixture of topics. It 
is efficient to analysis the short message like twitter, microblog, 
in our case app reviews. The model consists of three layers: 
documents, words, topics, i.e. 

kϕ
→ denotes the kth topic to words 

distribution and mϑ
→  denotes the mth document to topics 

distribution: 

2 https://developer.android.com/guide/index.html  

 
Fig. 1. Overview of SAR 

TABLE I 
ENTITY DISCOVERY ALGORITHM 

Input(R) 
Get entity set: Er, Es, Ehot 
num[]:frequency of an entity 
k=sum(E_r), s=sum(Es) 
for i=1,2,...,k do 
  for j=i+1,...,k do      
 value[i,j] = Word2Vec(Er[i],Er[j]) 
 if value[i,j]>0.5 
    denote Er[i]=Er[j] as the same entity 
         num[i]+1 
    end 
Each Er[] in top Q num[] entities: 
   for i=1,...,Q j=1,...,s do 
     if Word2Vec(Er[i],Es[])=0 
        Ehot=Er[;] 
     else Ehot=Es[j] s.t. Word2Vec(Er[i],Es[j])=maxValue 
export Ehot 

582582



 

1

1

11

1
1

{ Dir( ) }

{ Dir( ) } K topic

( )
( | )

( )
k

M
m m

K
k k

K
K

kk
kK

kkk

M documents

s

Dir Dirichlet allocationβ

ϑ α

ϕ β

β
ρ β ρ

β

→ →

=−
→ →

=−

→ →
−=

=
=

Θ =

Φ =

Γ

Γ
∏∏

    

     
   (2) 

Fang LI et al. [29] extends the LDA model by adding a tag 
layer between the document and topic layer, to effectively 
capture semantic knowledge from blogs, and gives the 
parameter estimation method. In this paper, based on Fang’s 
work, we add an entity layer to the original LDA and propose a 
E-LDA model to stratify app reviews. Our approach can be 
described in Fig. 2.  

By adding an entity layer  the document layer and topic 
layer, the distribution formula in (2) is modified in (3): 
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(3) 

Using this approach, we can get three distribution matrices, 
document to entity matrix , entity to topic matrix , topic to 
word distribution matrix . Then we extend the LDA to a four 
layer Bayes probability model. Therefore, the E-LDA model is 
illustrated in Fig. 3.  

For each word w in a document m, an entity e is sampled from 
the entity distribution m, then a topic t is drawn based on entity 
e from the distribution e, following, the word w is drawn based 
on the topic t from distribution k. The document m is generated 
by repeating the process Nm times, which is the number of word 
tokens in document m. 

B. App Reviews in Stratified Structure 
Using E-LDA model, we can obtain the documents to entities 

distribution, entities to topics distribution, and topics to words  
3 https://developer.android.com/guide/topics/ui/index.html  

distribution, thus we can get topics that are relevant to each 
entity according to entities to topics distribution, therefore, we 
can stratify reviews into entity-topic-document structure. If the 
probability of a topic in an entity exceeded the threshold, we 

believe that the topic and entity are relevant, otherwise they are 
irrelevant. For each entity, we can select the relevant topics 
according to matrix  with a threshold, then user reviews can 
be grouped into the topics according to matrix  with a 
threshold, therefore all app reviews will be stratified into a 
three-layer structure showed in table II.  

IV. ENTITY SENTIMENT COMPUTATION 
Normally, for one of entities we analysis above, when 

developers start to design, it consists of many aspects, e.g., an 

entity like UI design3, it would include the layout, color, and 
front etc. In general, we find out that people might be annoyed 
by one specific trait of an entity, but they are quite pleased by 
the rest part of entity, therefore they usually come up the 
problem in their reviews and instead give a high rating. In this 
situation, the rating is positive, however the reviews may tend 
to be negative, for some others the case would be vice versa. 

A. Problem Summary 
To some extent, the ratings relate to each review represent 

the user general attitude toward the app, positive, negative, or 
neutral, however, we find some users may give a high rating 
even they have complained about one specific function in 
reviews, e.g., the review from a widows store app Microsoft 

 
Fig. 2. Adding entity layer to LDA 

 
Fig. 3.  Entity-LDA model 

TABLE II 
APP REVIEWS STRATIFIED STRUCTURE 

Entity 1: 
• Topic 1: 

• Review 1 
• Review 2 
• … 
• Review N 

• Topic 2: 
• Review 1 
• … 
• Review N 

• … 
• Topic K 

Entity 2: 
• … 
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Math with a rating 4 (scale 1-5): 
There seems to be some mistakes within the exercises, like 

the solution explanation shows the sign with a + whereas the 
actual problem has a - or instead of a + sign there is a 
multiplication sign. But all in all the app is good and works 
well. 

Developers can directly understand that users are satisfy with 
the app from ratings and it is highly possible for them to ignore 
the details of the reviews with high ratings, which actually 
contain the valuable information about app improving given by 
users, in this case, the rating is not well presenting the users’ 
sentiment on apps, and it can also blind developers. Therefore, 
a new sentiment calculation method which takes into 
consideration both user ratings and reviews, need to be 
proposed. 

B. Mixed Sentiment Computing Solution 
SentiStrength [9] is a lexical sentiment extraction method 

specialized in analysis on short, low quality text. Based on the 
idea that humans can express both positive and negative 
sentiments in the same sentence, SentiStrength assigns positive 
scores in the [+1, +5] range, where +5 denotes an extremely 
positive sentiment and +1 denotes the absence of sentiment. 
Similarly, the negative sentiments range from [-1, -5], where -
5 denotes the extremely negative sentiment and -1 indicates the 
absence of any negative sentiment. For most ratings showed in 
app stores like Google Play, Apple Store, and Windows Store, 
the rating is a positive number ranges from [0, 5]. 

The algorithm we proposed is based on the SentiStrength, 
which calculates user sentiment on app entities, combing with 
ratings and the text that users give. This algorithm can help 
developers intuitively know what users mostly like and what 
need to be improved through sentiment values. For each review 
which relate to an entity using E-LDA, we record its ratings at 
the same time, H denotes the combination value of entity ratings 
Re and SentiStrength of reviews Sr. Re is the average of ratings 
that relate to the entity, we set a default value 0 where a review 
without rating. Similarly, Sr is the average of general sentiment 
on reviews of the entity. To combine this two parts, firstly we 
calculate the percentage G0, which denotes the ratio of Re to its 
full rating scale, P0 and Q0 represent the positive value and the 
absolute value of negative sentiment respectively in Sr. Then we 
modify P0 and Q0 according to G0, the algorithm can be 
described in TABLE III, N0 denotes the scale of modified 
SentiStrength.  

In this method, we assign H a new scale N=5, which makes 

 
4 https://github.com/MarcelloLins/GooglePlayAppsCrawler 

H ranges from [-5, 5], where -5 denotes an extremely negative 
sentiment, whereas +5 means the extremely positive sentiment. 

V. EMPIRICAL EVALUATION 
We study the apps uploaded by developers in mobile app 

stores like Google Play, Windows Store, and Apple Store. Each 
store has their user feedback session, allowing users give 
feedback, although rules of these mobile stores are slightly 
different in some ways, they all include app reviews and ratings. 
We develop a tool based on the project online4, by using it, we 
scrawl six apps of three categories from US app store Google 
Play,  our SAR model is estimated by using these data. 

A. Entity Discovery for A Specific App 
We fetch six apps data which are from game, social, and 

media categories respectively, each category has two apps to be 
analyzed. We choose apps from different categories because we 
want to evaluate the hot entity discovery part of SAR model, to 
test if it could discovery different entities in different app 
genres. For every two apps from the same category, we want to 
measure that if our method could discovery the app hot entities 
that are special to the app design and user experience, even in 
the same category, they may have common entities, whereas 
two different apps would focus on different theme, therefore the 
entities would be different. The overview of these app data is 
shown in TABLE IV.  

We implement our entity discovery algorithm to these app 
data analysis, the result is shown in TABLE V. For apps in 
different categories, the entities discovered by our model are 

distinctive, and present the common traits of the category, e.g., 
for the game app Bubble Shooter, since it is a game app, what 
users write most about the app is Advertise and its game rules 
Levels, as well as the Graphics etc., whereas for the media app 
Speaker Boost, which the entities are Speaker, Volume etc. This 
indicate that users download this app mostly for its practical 

TABLE III 
MIXED SENTIMENT COMPUTING ALGORITHM 

Define: N is new scale H[-N, N] 
  temp=abs(G0-0.5) 
  N0=5+(1-0.5)*5=7.5 
  case G0<0.5: 
   P1=P0, Q1=Q0 + N0*temp 
  case G0>0.5: 
   P1=P0 + N0*temp, Q1=Q0 
  General percentage G=p1/N0 - Q1/N0 
  H=Ave(G*N) 
Output H 

TABLE IV 
OVERVIEW OF THE EVALUATION APP DATA 

App Category #Reviews #Ratings Length 
Virtual Table Tennis Game 285,091 285,086 86 
Bubble Shooter Game 54,461 54,461 53 
Quora Social 164,002 164,002 125 
Tumblr Social 2,177,329 2,018,029 65 
YouTube Media 11,646,297 11,645,981 72 
Speaker Boost Media 29,631 29,631 56 

TABLE V 
APP HOT ENTITY DISCOVERY 

App Hot entities 
Virtual Table Tennis Shot, Advertise, Data, Spin Meter, Paddle, 

Online Playing 
Bubble Shooter Advertise, Levels, Bubble Shot, Challenging, 

Gift Box, Graphics 
Quora Question Answer, Not Working, Content, Bug 

Fix, Images, Website 
Tumblr Blog Post, Dash, Tags, Website Browser, Profile 

Customization, Video Gifts  
YouTube Subscription, Livestream, UI, Video Quality, 

Advertise, Playlist 
Speaker Boost Sound Cloud, Toggle, Speaker, Headphone, 

Volume, Podcast 
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functions that are quite different from the game genre. This 
result shows that our hot entity algorithm can extract the entities 

that users mostly concerned about, regardless of the app 
categories. On the other hand, inside the same category, the 
algorithm can also find the common entity between two 
different apps. For example, the Virtual Table Tennis and 
Bubble Shooter are game apps, and our algorithm finds the 
common frequently mentioned entity Advertise, this indicates 
that, firstly, our method have a high efficiency on hot entity 
discovery of app reviews; secondly, our algorithm can find a 
trait of the app category, e.g. the game genre that the 
advertisement is the common problem users complain about. 
For the rest part, we implement our E-LDA model to stratify 
these six apps according to the hot entities discovered in 
TABLE V. 

B. SAR Application 
We use reviews from Google Play5 to develop and evaluate 

our E-LDA model, however, the model can also be applied to 
reviews from other platforms. After we gathering the data and 
extracting entities form each app, a preprocessing of raw app 
reviews is conducted. The preprocessing of the reviews 
involves stop-words removal, lemmatization, and nouns, verbs, 
adjectives extraction by using Stanford CoreNLP6. The TABLE 
VI shows the result of E-LDA model applied to game app 
Bubble Shooter reviews. For an entity Levels, the topic11 and 
topic 8 have the highest probability 0.3634 and 0.2356 
respectively, this indicate that the two topics are related to the 
entity Levels. The review that have high probability to topic11 
is mainly about easy levels that user feedback, and the review 
of topic8 is mainly about the daily level that the user plays. 
From the content we can conclude that topic11 and topic8 both 
are relevant to entity Levels, the same case with other entities. 
From all the topic probability matrix we find that, when the 
probability of a topic is below the 0.2, the topic is irrelevant to 
the entity, therefore we set our threshold as 0.2 in E-LDA, and 
get the result in TABLE VI. 

For all the reviews that have assigned to different topics 
according to the entity, we can get the number of reviews in 
each topic of the entity. Then we implement our mixed 
sentiment computing algorithm, the result is shown in TABLE 
VII. We fetch 54,461 reviews from app Bubble Shooter, the E-
LDA model outputs 21 topics of the reviews, we finally 
calculate that there are 26,141 reviews actually contain the 
 

5 https://play.google.com/store/apps?hl=en  

meaningful information, and 7,842 reviews that are relevant to 
entity Levels, 5,228 reviews are about entity Challenging, and 

3,398 reviews are about entity Advertise. We compute these 
entities based on these relevant reviews and its ratings, and our 
mixed sentiment computing method outputs the sentiment value 
which ranges from [-5,5], the mixed sentiment value for entity 
Levels is 2, the entity Challenging is 1, and the entity Advertise 

is -3. 

C. Evaluation of E-LDA 
In general, there are two ways to evaluate topic model, the 

evaluation based on topic distribution and the evaluation based 
on Perplexity result, in this paper, we use Perplexity result [29] 
to evaluate E-LDA. Perplexity is a criterion in language models, 
it is used to evaluate the generalization ability of the model. In 
LDA it is computed in (3): 

1

1

log (w )
Per (D ) exp

M

d
d

test M

d
d

p
plexity

N

=

=

=
(3) 

Where Dtest denotes the testing set, which the set has M 
documents, and each document d has Nd words, and wd 
denotes words vector. Perplexity value would decrease as the 
increase of log p(wd) value, which indicates that the smaller 
the perplexity value is, the better is the model. The Perplexity 
of E-LDA computing formula is described in (4). 

6 http://stanfordnlp.github.io/CoreNLP/  

TABLE VI 
E-LDA DISTRIBUTION RESULE OF BUBBLE SHOOTER REVIEWS 

Entity High probability topic High probability reviews 
Levels topic11(P=0.3634) All levels are pretty easy. Wish the levels got a little harder as you move up. But overall a good game. 

topic8(P=0.2356) Its like totally awesome. I play every day im up to level 658 lolsz 
Challenging 
 

topic15(P=0.4652) I really like this game but it is just a little too easy if this was a little more challenging I might give it 
more stars.there are also a couple adds that were annoying but other than that this is a great game ;) 

topic6(P=0.3221) Fun and challenging but the most frustrating challenge is having to close pop up ads every 20 to 60 
seconds of game play. Life is too short for such BS. 

Advertise topic10(P=0.5783) The amount of ads is to much. Every completed level and you get an ad. Theyre easy so its ad after ad 
after ad. Ill look for another game im sure ill find one similar 

topic4(P=0.4183) Addictive game a chalange for free time.ads is a problem but i hope it will update with add free 
version. 

TABLE VII 
STRATIFIED STRUCTURE FOR BUBBLE SHOOTER REVIEWS 

Levels [sentiment: 2]: 7,842 reviews 
• topic 11: 

• … 
• topic 8: 

• … 
• … 

Challenging [sentiment: 1]: 5,228 reviews 
• topic15 

• … 
• topic6 

• … 
• … 

Advertise [sentiment: -3]: 3,398 reviews 
• topic10 

• … 
• Topic4 

• … 
• … 
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The number of topic K has a strong effect on the performance 
of E-LDA model, in order to get the proper value K, we test the 
Perplexity on the condition that K=10, 20, 30, 40, 50, 60, 70, 
80, 100 respectively, the result is showed in Fig. 4. From the 
result we can conclude that Perplexity decease with the iteration 
accumulating in all numbers of topics, and eventually converge 
to a stable level. We can also conclude that in the same iteration, 
the Perplexity decreases as the topics increase, when K increase 
to 50 or larger, the Perplexity would grow at large. As the 
irrelative reviews would be assigned to one topic when K is too 
small, whereas the relative reviews would be divided into two 
different topics if K is too big. As a result, we choose to put the 
K =28 according to the data, when the Perplexity reaches the 
base point.  

At the same time, we set iteration frequency as 1000, and put 
K=10, 20, 30, 40, 50, 60, 70, 80, 100 respectively, compare the 
Perplexity between LDA and E-LDA, Fig. 5. shows the result. 
For all different number of topics, the Perplexity of E-LDA is 
lower than that of LDA, which indicates that E-LDA has a 
better performance when we add an entity layer to LDA 
language model.  

In the end, we use recall, precision, and F-measure to 
evaluate our topics and entities that retrieved by SAR. The list 
below is the definition of reviews types that tested in SAR: 

• True positives (TP): If it was automatically extracted from a review 
and was also manually identified in that review. 

• False positives (FP): Reviews that were automatically associated to a 
topic in one of the topics and entities, but were not identified manually 
in that review. 

• False negative (FN): Reviews that were manually identified in a topic 
but were not present in any of the extracted topics and entities 
associated to the review. 

• True negative (TN): Reviews that were manually identified and also 

present in the extracted topics and entities. 
Therefore, the recall R and precision P is computed in (5) 

TP TPR P
TP FN TP FP

= =
+ +

,           (5) 

F-measure of the system is defined as the weighted harmonic 
mean if its precision and recall, that is, 

1 [0,1]1 1(1 )
F

P R

α
α α

= ∈
+ −

       (6) 

where  is the weight in (6), F-measure is high only when both 
recall and precision are high, it is equivalent to recall when =0 
and precision when =1. The F-measure assumes values in the 
interval [0,1]. It is 0 when no relevant reviews have been 
retrieved, and is 1 if all retrieved reviews are relevant to same 
topics and entities. Table VIII summarizes the result. Compared 
to social app, two apps from game genre have lower recall and 
precision, we achieved the highest recall of 86% for Quora, this 
result probably due to higher quality of reviews that users give 
in social apps. For all the apps, we achieve the average recall 
68%, and the average precision 64%, the result shows our 
approach to stratify the user reviews automatically is effective.  

VI. RELATED WORK 
SAR model that we proposed has three components: hot entity 

discovery from raw app reviews, a model grouping reviews into 
a stratified structure, and a mixed sentiment computing method 
for review entity. As a result, we focus the related work 
discussion in three areas: information extraction from app 
reviews, user reviews classification, as well as sentiment 
analysis on text. 

A. Information Extraction of App Reviews 
Manning et al. [13] introduced information retrieval 

technology in their book, and the foundations of statical natural 
language processing is also discussed on their book [7]. 
However, there are very few works in mining useful 
information from user’s reviews with this knowledge. One of 
the earliest work is from Chandy et al. [20] who propose a 
simple latent model to identify spamming reviews on Apple 
AppStore. Recently, there are tools have been developed to 
analysis app reviews, helping developers discover most 
informative user reviews i.e. feature request, bug report, fraud 
reviews detection. Besides information retrieval, there are also 
other angles to analysis mobile app reviews [22, 24, 25, 32, 34]. 

Hu and Liu introduced an approach [2] to extract customers’ 
opinion features from their reviews. A case study of user 
involvement in software evolution was conducted by Pagano 
and Brügge [28]. Carreno and Winbladh also introduce an 
approach for software requirements evolution, which is based 
on the analysis of user comments [21]. Claudia and Rachel [1] 

       
 Fig. 4.  The Perplexity of E-LDA in different number of topics 

       
 Fig. 5.  The Perplexity comparison of LDA and E-LDA  

TABLE VIII 
EVALUATION OF TOPICS AND ENTITIES 

App Recall Precision F-measure 
Virtual Table Tennis 0.436 0.427 0.432 
Bubble Shooter 0.534 0.528 0.531 
Quora 0.864 0.832 0.847 
Tumblr 0.823 0.714 0.765 
YouTube 0.753 0.726 0.739 
Speaker Boost 0.681 0.627 0.653 
Average 0.682 0.642 0.661 
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proposed a prototype MARA (Mobile App Review Analyzer) 
to automatically retrieve request features of online reviews. The 
features extracted in their work based on linguistic rules which 
simply include some keywords that might be not sufficient for 
practical review analysis. Chen et al. proposed a computational 
framework AR-Miner [12] to extract and rank informative 
reviews at sentence level. Gao and Xu introduce a AR-Tracker 
which is capable of tracking the dynamics of mobile apps via 
user review mining [35]. Phong et al developed a keyword 
based tool MARK [37] for review analysis of mobile apps. The 
analyst can use MARK to list the reviews most relevant to a set 
of keywords, the tool can also draw trends over time of the 
selected keywords. As for fraud opinion detection among users’ 
reviews, Akoglu et al. introduced a method that can exploits the 
network effect among reviewers and products [31]. Palomba et 
al. highlight the importance of user reviews in their work 
tacking crowdsourced reviews to support evolution of 
successful apps [33].  

Based on the works above, our entity discovery algorithm of 
SAR is distinctive in three ways. Firstly, instead of simply 
extract feature request or bug reports, we get abstract hot entity 
that users care most, the entity is modified and abstract by the 
standard entity dictionary that we build from developer 
documents. Secondly, our hot entities are different from 
keywords, they focused on users’ hot expectations on different 
aspects of the app. Finally, our method can be timing which is 
dynamically refresh from the dataset, always keep on the trend 
of users’ thinking. 

B. User Reviews Classification 
There are ways to classify the text, one of earlier work that 

apply classification algorithms to mobile app reviews is the 
work of Antoniol et al. [23] who conducted experiments on 
classifying requests retrieved from reviews. They showed that 
alternating decision trees, naïve Bayes classifiers, and logistic 
regression can be used to accurately distinguish bugs from other 
kinds of issues. Herzig and Just discussed how misclassification 
impacts bug prediction [26]. Ohana and Tienery proposed a 
supervised learning method that can be applied to sentiment 
classification of user reviews [30]. Guzman et al. introduced a 
taxonomy for classifying app reviews into categories relevant 
for software evolution [36]. Maalej and Nabil introduced 
several probabilistic techniques to classify app reviews into 
four types: bug reports, feature requests, user experiences, and 
ratings [38].  

Our approach SAR for reviews classification distinguishes the 
previous work, we modify the topic model LDA [4], adding a 
hot entity layer which can stratify user reviews into a fine grain 
structure, which provides developers an easier and faster way 
to look into reviews, presenting reviews that relevant to entities 
fiercely discussed by users. 

C. Sentiment Analysis on Reviews 
Sentiment analysis on reviews can help developers know 

users’ satisfaction about the app. Thelwall et al. proposed a 
method to detection the sentiment strength in short informal text 
[9]. Later they also analysis the sentiment strength on social 
web [10]. As for software evolution, Li and Zhang introduced 
an approach to analyze users’ satisfaction toward software [5]. 
After that Fu and Lin conducted a sentiment analysis on user 
feedback in a mobile app store [14], to help develop understand 

why users hate the app. A study on free ios apps was conducted 
by Khalid and Shihab [17]. Before that Iacob et al. introduced 
a study of online reviews of mobile apps to figure out what users 
complain about [18]. Guzman and Maaleij proposed an 
automated approach that help developers filter, aggregate, and 
analyze user reviews, and then extract user sentiments about the 
identified features, giving them general score across all reviews 
[11]. Later, Guzman et al. presented a feature and sentiment 
centric retrieval approach which dynamically provides 
developers with a diverse sample of user reviews [39]. 

With respect to computation of the sentiment on user reviews, 
our novel model SAR combines the ratings and sentiment 
strength on short text, which is distinctive among the previous 
work, experiment shows that our mixed sentiment computing 
method in SAR presents the users’ satisfaction of the app better 
than the single sentiment strength on reviews. 

VII. CONCLUSION 
The experiment indicates that SAR is effective in mobile app 

reviews analysis, proposing a nascent angle to get users 
feedback for mobile app developers. It can help developers 
improve their app design more efficient in three ways. Firstly, 
it can extract hot entities automatically from raw reviews, these 
entities are what users mostly concern about, it can let 
developers quickly understand what aspects of the app are being 
considered by users when they download the app. Secondly, 
SAR can stratify reviews into different topics according to the 
entity, it can provide the details of what the users are thinking 
about apps, making developers easier to find those informative 
content. Finally, SAR can assign sentiment value to each entity, 
which provide an intuitive way for developers to notice if the 
entity was favored by users. In addition, since SAR can 
dynamically absorb reviews, it can also be applied to monitor 
users’ behaviors toward apps, making developer be the first 
person to know what aspects of   app need to update or improve 
to attract latent users, this would make developers more 
competitive in their fellows. Another application of SAR is an 
analysis tool for users, when they start to find a new app, SAR 
can be applied to list the bad and good aspects of the app 
downloaded by previous users. There are also more works 
about SAR in future, the performance of E-LDA need to be 
improved in order to achieve a higher recall and precision. 
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