

Stratify Mobile App Reviews: E-LDA Model Based on Hot “Entity” Discovery

Yuandong Liu, Yanwei Li,
BUPT National Engineering Lab for Mobile Network

Technologies
 National Computer Network Emergency Response Technical

Team/Coordination Center of China
Beijing, China

cyrus.cl@outlook.com

Yanhui Guo, Miao Zhang
BUPT National Engineering Lab for Mobile Network

Technologies
Beijing, China

{yhguo, zhangmiao}@bupt.edu.cn

Abstract—Recent literatures have illustrated approaches that
can automatically extract informative content from noisy mobile
app reviews, however the key information such as feature
requests, bug reports etc., retrieved by these methods are still
mixed and what users really care about the app remains unknown
to developers. In this paper we propose a novel model SAR:
Stratify App Reviews, providing developers information about
users’ real reaction toward apps. SAR stratifies informative
reviews into different layers, grouping the reviews based on what
users concern, and we also develop a method to compute the user
general sentiment on each entity. The model performs user-
oriented analytics from raw reviews by (i) first extracting entities
from each review, identifying hot entities of the app that users
mostly care about, (ii) then stratifying all the reviews into different
layers according to hot entities with a four-layer Bayes probability
method, (iii) and finally computing user sentiments on hot entities.
We conduct experiments on three genres of apps i.e. Games,
Social, and Media, the result shows that SAR could identify
different hot entities with respect to the specific categories of apps,
and accordingly, it can stratify relevant reviews into different
layers, the sentiment value of each entity can also represent users’
satisfaction well, we also compared the result with human analysis,
with the similar accuracy, the SAR can speed up the overall
analysis automatically. Our model can help developers quickly
understand what entities of the app users mostly care about, and
how do they react to these entities.

Index Terms—App Review, Bayes Probability, Sentiment
Computation, Entity.

I. INTRODUCTION
Recently, with the development of mobile Internet, mobile

apps are thriving at large [16], which connect to everyone’s life.
Users download apps from app stores, and write reviews to
share their experience about the app performance, these reviews
contain valuable information for app developers, also attract to
latent users [2]. Therefore, finding valuable information from
these noisy reviews is of importance for both developers and
users. As apps updated periodically and new app released, the
app reviews increased tremendously everyday [33]. In this
case, human reading of these apps reviews would be tedious and
time consuming.

In order to improve users experience, reading app reviews is
an effective way for developers to understand what users think
about the app and what do they really need [14,17,18]. Recent
works have proposed ways to extract informative content from
raw reviews [3,12,39], such as extracting feature requests
through linguistic rules [1], classifying reviews into different
categories, also some works conduct sentiment analysis on
these reviews to compute user’s satisfaction towards the app

[5]. Some literatures also develop tools to help developers and
users to find different types of reviews [35]. All these works
have been recently conducted due to the high frequency of app
using in daily life, applying nature language processing and
machine learning algorithm. Previous works on app views
mining mainly focus on the linear level of Natural Language
Processing [38], mostly they concentrate on the key information
extraction, filter the noisy and useless reviews, or using NLP
technology divide them into different topics. When we look into
different categories of apps such as Games, Education, and
Media etc., those apps have quite different functions, and users
focus on totally different aspects when writing reviews. The
previous work [25] on these reviews can extract all the feature
requests and classify them, but no further works have been
conducted. Therefore, identifying hot entities most concerned
by users toward different apps, and grouping the related reviews
into fine grained topics would be an effective way for
developers to understand users and to improve their apps.
However, we find no research work in this perspective has been
done, whereas a fine grained sentiment analysis on app reviews
have been conducted [11], and also a tool developed for app
reviews mining based on key words [37].

In this paper, we conduct a survey about the user preference
among different categories of apps they use. We find out that
users are more focused on the scenic design, graphics and sound
effect of a game app, whereas for a social app, these would
switch to sharing, loading, notification etc., also with respect to
other type of apps, it would be other aspects. We denote these
aspects as entities, there are a bunch of reviews written by users
related to each entity. Entities would have the same type of bug
reports or features requests, or function problem etc., for
example, reviews from a social app like Facebook, with respect
to UI design and Functions, users may have hundreds of
reviews towards these two entities, which both have feature
requests and bug reports, and details like remove or add the
specific items. In this case, the recent work [21] extracts all
reviews containing such information but still a bit noisy to
figure out which entities users want to change most, and how
users react to these entities remains unknown. Considering
these two situations, we term the problem Stratify App
Reviews, and based on the previous research we propose the
solution model SAR.

The model consists of three parts: hot entity discovery,
stratifying reviews and entity sentiment analysis, the structure
of SAR is showed in Fig. 1. Here we denote entity as the

2016 12th International Conference on Signal-Image Technology & Internet-Based Systems

978-1-5090-5698-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SITIS.2016.97

581

2016 12th International Conference on Signal-Image Technology & Internet-Based Systems

978-1-5090-5698-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SITIS.2016.97

581

combination of nouns that appear frequently in reviews, E-LDA
is our modified topic model based on LDA model [4]. The three
parts of our model we proposed can help developers quickly
notice the most user-concerned entities, and go into the
hierarchical group of reviews for the details, therefore
developers can understand which aspects of the app should be
improved and enhanced, as well as which parts that users are
not fond of. With the sentimental value of each entity,
developers can intuitively observe how users react to the app
design.

The remainder of this paper is structured as follows. Section
II introduces hot entity discovery method. Section III describes
stratified app reviews mining approach. Section IV presents the
sentiment computing of each entity. Section V shows our
empirical evaluation of SAR and case studies. Finally, related
works are discussed in Section VI and we conclude our study
in Section VII.

II. HOT ENTITY DISCOVERY
Generally, users writing reviews about different traits of an

entity, the first step of SAR model is finding out those entities
that mostly reviewed by users. The entity extraction from text
set is the mainly studied filed in nature language process. We
denote R as a set of all reviews from one specific app, using the
Stanford Named Entity Recognizer1, we obtained all entities
from R. Since most users are not professional in mobile app
develop, when they writing reviews about one function or
feature of the app, they might use different words to describe it,
e.g., user would write picture review, photo download, and
picture deleting about one social application, however in
developer’s perspective, and these are relevant to one entity that
is photo processing.

 In order to make entities more representative and effectively
describe the general aspects of an app design, we build a
standard app develop entity dictionary based on the developer
document 2 . The dictionary records standard specific
components that a developer need to release a high quality app.
We define all the data sets as follow:

r

 = { the standard developer entities }
 = { entities of a review from R }

 = { Hot entitis of an app }
 denote the Word2Vec relation computing

s

hot k s

E
E
E E E= ∩
∩

 (1)

 1 http://stanfordnlp.github.io/CoreNLP/ner.html

The hot entity is the one that mostly concerned by users, this
means high frequency of appearance in Er, we use Word2Vec,
a distributed, vector-based representation of words [40], to
compute the relationship of entities inside the dataset Er, as well
as entities between Es and Er. By doing this, we are able to count
the frequency of hot entity mentioned in (1), rank them and
extract hot entities that have high value of relation with entity
in Es. The entity discovery algorithm can be described in table
I.

For the entity that have high frequency in Er but low relation
value, the algorithm would directly put it into Ehot.

III. STRATIFY REVIEWS
To stratify the reviews that are relevant to the entities found

above, we modified the existing topic model Latent Dirichlet
Allocation (LDA) [4], add an entity layer, we denote the model
as Entity-LDA (E-LDA). In this approach, we are able to
classify the reviews into different topics according to different
entities, classifying all app reviews into topics according to
entities that users mostly care about. Since the hot entity
discovery algorithm would find entities that are mostly talked
about by users in a specific period, E-LDA can help developers
quickly figure out what need to be improved or modified about
the app, which make developers much more competitive in the
mobile marketplace.

A. E-LDA Topic Model
The topic model LDA is a probabilistic distribution

algorithm which uses Gibbs sampling to assign topics to
documents, and each topic is a probabilistic distribution over
words, thus each document is modeled as a mixture of topics. It
is efficient to analysis the short message like twitter, microblog,
in our case app reviews. The model consists of three layers:
documents, words, topics, i.e.

kϕ
→ denotes the kth topic to words

distribution and mϑ
→ denotes the mth document to topics

distribution:

2 https://developer.android.com/guide/index.html

Fig. 1. Overview of SAR

TABLE I
ENTITY DISCOVERY ALGORITHM

Input(R)
Get entity set: Er, Es, Ehot
num[]:frequency of an entity
k=sum(E_r), s=sum(Es)
for i=1,2,...,k do
 for j=i+1,...,k do
 value[i,j] = Word2Vec(Er[i],Er[j])
 if value[i,j]>0.5
 denote Er[i]=Er[j] as the same entity
 num[i]+1
 end
Each Er[] in top Q num[] entities:
 for i=1,...,Q j=1,...,s do
 if Word2Vec(Er[i],Es[])=0
 Ehot=Er[;]
 else Ehot=Es[j] s.t. Word2Vec(Er[i],Es[j])=maxValue
export Ehot

582582

1

1

11

1
1

{ Dir() }

{ Dir() } K topic

()
(|)

()
k

M
m m

K
k k

K
K

kk
kK

kkk

M documents

s

Dir Dirichlet allocationβ

ϑ α

ϕ β

β
ρ β ρ

β

→ →

=−
→ →

=−

→ →
−=

=
=

Θ =

Φ =

Γ

Γ
∏∏

 (2)

Fang LI et al. [29] extends the LDA model by adding a tag
layer between the document and topic layer, to effectively
capture semantic knowledge from blogs, and gives the
parameter estimation method. In this paper, based on Fang’s
work, we add an entity layer to the original LDA and propose a
E-LDA model to stratify app reviews. Our approach can be
described in Fig. 2.

By adding an entity layer the document layer and topic
layer, the distribution formula in (2) is modified in (3):

1

E
e e 1

1

11

1
1

{ Dir() }

{ Dir() } E

{ Dir() } K topic

()
(|)

()
k

M
m m

K
k k

K
K

kk
kK

kkk

M documents

entities

s

Dir Dirichlet allocationα

θ η

ψ β

ϕ α

α
ρ α ρ

α

ω

→ →

=−
→ →

=
−

→ →

=−

→ →
−=

=
=

Θ =

=

Φ =

Γ

Γ
∏∏

(3)

Using this approach, we can get three distribution matrices,
document to entity matrix , entity to topic matrix , topic to
word distribution matrix . Then we extend the LDA to a four
layer Bayes probability model. Therefore, the E-LDA model is
illustrated in Fig. 3.

For each word w in a document m, an entity e is sampled from
the entity distribution m, then a topic t is drawn based on entity
e from the distribution e, following, the word w is drawn based
on the topic t from distribution k. The document m is generated
by repeating the process Nm times, which is the number of word
tokens in document m.

B. App Reviews in Stratified Structure
Using E-LDA model, we can obtain the documents to entities

distribution, entities to topics distribution, and topics to words
3 https://developer.android.com/guide/topics/ui/index.html

distribution, thus we can get topics that are relevant to each
entity according to entities to topics distribution, therefore, we
can stratify reviews into entity-topic-document structure. If the
probability of a topic in an entity exceeded the threshold, we

believe that the topic and entity are relevant, otherwise they are
irrelevant. For each entity, we can select the relevant topics
according to matrix with a threshold, then user reviews can
be grouped into the topics according to matrix with a
threshold, therefore all app reviews will be stratified into a
three-layer structure showed in table II.

IV. ENTITY SENTIMENT COMPUTATION
Normally, for one of entities we analysis above, when

developers start to design, it consists of many aspects, e.g., an

entity like UI design3, it would include the layout, color, and
front etc. In general, we find out that people might be annoyed
by one specific trait of an entity, but they are quite pleased by
the rest part of entity, therefore they usually come up the
problem in their reviews and instead give a high rating. In this
situation, the rating is positive, however the reviews may tend
to be negative, for some others the case would be vice versa.

A. Problem Summary
To some extent, the ratings relate to each review represent

the user general attitude toward the app, positive, negative, or
neutral, however, we find some users may give a high rating
even they have complained about one specific function in
reviews, e.g., the review from a widows store app Microsoft

Fig. 2. Adding entity layer to LDA

Fig. 3. Entity-LDA model

TABLE II
APP REVIEWS STRATIFIED STRUCTURE

Entity 1:
• Topic 1:

• Review 1
• Review 2
• …
• Review N

• Topic 2:
• Review 1
• …
• Review N

• …
• Topic K

Entity 2:
• …

583583

Math with a rating 4 (scale 1-5):
There seems to be some mistakes within the exercises, like

the solution explanation shows the sign with a + whereas the
actual problem has a - or instead of a + sign there is a
multiplication sign. But all in all the app is good and works
well.

Developers can directly understand that users are satisfy with
the app from ratings and it is highly possible for them to ignore
the details of the reviews with high ratings, which actually
contain the valuable information about app improving given by
users, in this case, the rating is not well presenting the users’
sentiment on apps, and it can also blind developers. Therefore,
a new sentiment calculation method which takes into
consideration both user ratings and reviews, need to be
proposed.

B. Mixed Sentiment Computing Solution
SentiStrength [9] is a lexical sentiment extraction method

specialized in analysis on short, low quality text. Based on the
idea that humans can express both positive and negative
sentiments in the same sentence, SentiStrength assigns positive
scores in the [+1, +5] range, where +5 denotes an extremely
positive sentiment and +1 denotes the absence of sentiment.
Similarly, the negative sentiments range from [-1, -5], where -
5 denotes the extremely negative sentiment and -1 indicates the
absence of any negative sentiment. For most ratings showed in
app stores like Google Play, Apple Store, and Windows Store,
the rating is a positive number ranges from [0, 5].

The algorithm we proposed is based on the SentiStrength,
which calculates user sentiment on app entities, combing with
ratings and the text that users give. This algorithm can help
developers intuitively know what users mostly like and what
need to be improved through sentiment values. For each review
which relate to an entity using E-LDA, we record its ratings at
the same time, H denotes the combination value of entity ratings
Re and SentiStrength of reviews Sr. Re is the average of ratings
that relate to the entity, we set a default value 0 where a review
without rating. Similarly, Sr is the average of general sentiment
on reviews of the entity. To combine this two parts, firstly we
calculate the percentage G0, which denotes the ratio of Re to its
full rating scale, P0 and Q0 represent the positive value and the
absolute value of negative sentiment respectively in Sr. Then we
modify P0 and Q0 according to G0, the algorithm can be
described in TABLE III, N0 denotes the scale of modified
SentiStrength.

In this method, we assign H a new scale N=5, which makes

4 https://github.com/MarcelloLins/GooglePlayAppsCrawler

H ranges from [-5, 5], where -5 denotes an extremely negative
sentiment, whereas +5 means the extremely positive sentiment.

V. EMPIRICAL EVALUATION
We study the apps uploaded by developers in mobile app

stores like Google Play, Windows Store, and Apple Store. Each
store has their user feedback session, allowing users give
feedback, although rules of these mobile stores are slightly
different in some ways, they all include app reviews and ratings.
We develop a tool based on the project online4, by using it, we
scrawl six apps of three categories from US app store Google
Play, our SAR model is estimated by using these data.

A. Entity Discovery for A Specific App
We fetch six apps data which are from game, social, and

media categories respectively, each category has two apps to be
analyzed. We choose apps from different categories because we
want to evaluate the hot entity discovery part of SAR model, to
test if it could discovery different entities in different app
genres. For every two apps from the same category, we want to
measure that if our method could discovery the app hot entities
that are special to the app design and user experience, even in
the same category, they may have common entities, whereas
two different apps would focus on different theme, therefore the
entities would be different. The overview of these app data is
shown in TABLE IV.

We implement our entity discovery algorithm to these app
data analysis, the result is shown in TABLE V. For apps in
different categories, the entities discovered by our model are

distinctive, and present the common traits of the category, e.g.,
for the game app Bubble Shooter, since it is a game app, what
users write most about the app is Advertise and its game rules
Levels, as well as the Graphics etc., whereas for the media app
Speaker Boost, which the entities are Speaker, Volume etc. This
indicate that users download this app mostly for its practical

TABLE III
MIXED SENTIMENT COMPUTING ALGORITHM

Define: N is new scale H[-N, N]
 temp=abs(G0-0.5)
 N0=5+(1-0.5)*5=7.5
 case G0<0.5:
 P1=P0, Q1=Q0 + N0*temp
 case G0>0.5:
 P1=P0 + N0*temp, Q1=Q0
 General percentage G=p1/N0 - Q1/N0
 H=Ave(G*N)
Output H

TABLE IV
OVERVIEW OF THE EVALUATION APP DATA

App Category #Reviews #Ratings Length
Virtual Table Tennis Game 285,091 285,086 86
Bubble Shooter Game 54,461 54,461 53
Quora Social 164,002 164,002 125
Tumblr Social 2,177,329 2,018,029 65
YouTube Media 11,646,297 11,645,981 72
Speaker Boost Media 29,631 29,631 56

TABLE V
APP HOT ENTITY DISCOVERY

App Hot entities
Virtual Table Tennis Shot, Advertise, Data, Spin Meter, Paddle,

Online Playing
Bubble Shooter Advertise, Levels, Bubble Shot, Challenging,

Gift Box, Graphics
Quora Question Answer, Not Working, Content, Bug

Fix, Images, Website
Tumblr Blog Post, Dash, Tags, Website Browser, Profile

Customization, Video Gifts
YouTube Subscription, Livestream, UI, Video Quality,

Advertise, Playlist
Speaker Boost Sound Cloud, Toggle, Speaker, Headphone,

Volume, Podcast

584584

functions that are quite different from the game genre. This
result shows that our hot entity algorithm can extract the entities

that users mostly concerned about, regardless of the app
categories. On the other hand, inside the same category, the
algorithm can also find the common entity between two
different apps. For example, the Virtual Table Tennis and
Bubble Shooter are game apps, and our algorithm finds the
common frequently mentioned entity Advertise, this indicates
that, firstly, our method have a high efficiency on hot entity
discovery of app reviews; secondly, our algorithm can find a
trait of the app category, e.g. the game genre that the
advertisement is the common problem users complain about.
For the rest part, we implement our E-LDA model to stratify
these six apps according to the hot entities discovered in
TABLE V.

B. SAR Application
We use reviews from Google Play5 to develop and evaluate

our E-LDA model, however, the model can also be applied to
reviews from other platforms. After we gathering the data and
extracting entities form each app, a preprocessing of raw app
reviews is conducted. The preprocessing of the reviews
involves stop-words removal, lemmatization, and nouns, verbs,
adjectives extraction by using Stanford CoreNLP6. The TABLE
VI shows the result of E-LDA model applied to game app
Bubble Shooter reviews. For an entity Levels, the topic11 and
topic 8 have the highest probability 0.3634 and 0.2356
respectively, this indicate that the two topics are related to the
entity Levels. The review that have high probability to topic11
is mainly about easy levels that user feedback, and the review
of topic8 is mainly about the daily level that the user plays.
From the content we can conclude that topic11 and topic8 both
are relevant to entity Levels, the same case with other entities.
From all the topic probability matrix we find that, when the
probability of a topic is below the 0.2, the topic is irrelevant to
the entity, therefore we set our threshold as 0.2 in E-LDA, and
get the result in TABLE VI.

For all the reviews that have assigned to different topics
according to the entity, we can get the number of reviews in
each topic of the entity. Then we implement our mixed
sentiment computing algorithm, the result is shown in TABLE
VII. We fetch 54,461 reviews from app Bubble Shooter, the E-
LDA model outputs 21 topics of the reviews, we finally
calculate that there are 26,141 reviews actually contain the

5 https://play.google.com/store/apps?hl=en

meaningful information, and 7,842 reviews that are relevant to
entity Levels, 5,228 reviews are about entity Challenging, and

3,398 reviews are about entity Advertise. We compute these
entities based on these relevant reviews and its ratings, and our
mixed sentiment computing method outputs the sentiment value
which ranges from [-5,5], the mixed sentiment value for entity
Levels is 2, the entity Challenging is 1, and the entity Advertise

is -3.

C. Evaluation of E-LDA
In general, there are two ways to evaluate topic model, the

evaluation based on topic distribution and the evaluation based
on Perplexity result, in this paper, we use Perplexity result [29]
to evaluate E-LDA. Perplexity is a criterion in language models,
it is used to evaluate the generalization ability of the model. In
LDA it is computed in (3):

1

1

log (w)
Per (D) exp

M

d
d

test M

d
d

p
plexity

N

=

=

=
(3)

Where Dtest denotes the testing set, which the set has M
documents, and each document d has Nd words, and wd
denotes words vector. Perplexity value would decrease as the
increase of log p(wd) value, which indicates that the smaller
the perplexity value is, the better is the model. The Perplexity
of E-LDA computing formula is described in (4).

6 http://stanfordnlp.github.io/CoreNLP/

TABLE VI
E-LDA DISTRIBUTION RESULE OF BUBBLE SHOOTER REVIEWS

Entity High probability topic High probability reviews
Levels topic11(P=0.3634) All levels are pretty easy. Wish the levels got a little harder as you move up. But overall a good game.

topic8(P=0.2356) Its like totally awesome. I play every day im up to level 658 lolsz
Challenging

topic15(P=0.4652) I really like this game but it is just a little too easy if this was a little more challenging I might give it
more stars.there are also a couple adds that were annoying but other than that this is a great game ;)

topic6(P=0.3221) Fun and challenging but the most frustrating challenge is having to close pop up ads every 20 to 60
seconds of game play. Life is too short for such BS.

Advertise topic10(P=0.5783) The amount of ads is to much. Every completed level and you get an ad. Theyre easy so its ad after ad
after ad. Ill look for another game im sure ill find one similar

topic4(P=0.4183) Addictive game a chalange for free time.ads is a problem but i hope it will update with add free
version.

TABLE VII
STRATIFIED STRUCTURE FOR BUBBLE SHOOTER REVIEWS

Levels [sentiment: 2]: 7,842 reviews
• topic 11:

• …
• topic 8:

• …
• …

Challenging [sentiment: 1]: 5,228 reviews
• topic15

• …
• topic6

• …
• …

Advertise [sentiment: -3]: 3,398 reviews
• topic10

• …
• Topic4

• …
• …

585585

1

1

log (w | e)
Per (D) exp

M

d
d

test M

d
d

p
plexity

N

=

=

=
 (4)

The number of topic K has a strong effect on the performance
of E-LDA model, in order to get the proper value K, we test the
Perplexity on the condition that K=10, 20, 30, 40, 50, 60, 70,
80, 100 respectively, the result is showed in Fig. 4. From the
result we can conclude that Perplexity decease with the iteration
accumulating in all numbers of topics, and eventually converge
to a stable level. We can also conclude that in the same iteration,
the Perplexity decreases as the topics increase, when K increase
to 50 or larger, the Perplexity would grow at large. As the
irrelative reviews would be assigned to one topic when K is too
small, whereas the relative reviews would be divided into two
different topics if K is too big. As a result, we choose to put the
K =28 according to the data, when the Perplexity reaches the
base point.

At the same time, we set iteration frequency as 1000, and put
K=10, 20, 30, 40, 50, 60, 70, 80, 100 respectively, compare the
Perplexity between LDA and E-LDA, Fig. 5. shows the result.
For all different number of topics, the Perplexity of E-LDA is
lower than that of LDA, which indicates that E-LDA has a
better performance when we add an entity layer to LDA
language model.

In the end, we use recall, precision, and F-measure to
evaluate our topics and entities that retrieved by SAR. The list
below is the definition of reviews types that tested in SAR:

• True positives (TP): If it was automatically extracted from a review
and was also manually identified in that review.

• False positives (FP): Reviews that were automatically associated to a
topic in one of the topics and entities, but were not identified manually
in that review.

• False negative (FN): Reviews that were manually identified in a topic
but were not present in any of the extracted topics and entities
associated to the review.

• True negative (TN): Reviews that were manually identified and also

present in the extracted topics and entities.
Therefore, the recall R and precision P is computed in (5)

TP TPR P
TP FN TP FP

= =
+ +

, (5)

F-measure of the system is defined as the weighted harmonic
mean if its precision and recall, that is,

1 [0,1]1 1(1)
F

P R

α
α α

= ∈
+ −

 (6)

where is the weight in (6), F-measure is high only when both
recall and precision are high, it is equivalent to recall when =0
and precision when =1. The F-measure assumes values in the
interval [0,1]. It is 0 when no relevant reviews have been
retrieved, and is 1 if all retrieved reviews are relevant to same
topics and entities. Table VIII summarizes the result. Compared
to social app, two apps from game genre have lower recall and
precision, we achieved the highest recall of 86% for Quora, this
result probably due to higher quality of reviews that users give
in social apps. For all the apps, we achieve the average recall
68%, and the average precision 64%, the result shows our
approach to stratify the user reviews automatically is effective.

VI. RELATED WORK
SAR model that we proposed has three components: hot entity

discovery from raw app reviews, a model grouping reviews into
a stratified structure, and a mixed sentiment computing method
for review entity. As a result, we focus the related work
discussion in three areas: information extraction from app
reviews, user reviews classification, as well as sentiment
analysis on text.

A. Information Extraction of App Reviews
Manning et al. [13] introduced information retrieval

technology in their book, and the foundations of statical natural
language processing is also discussed on their book [7].
However, there are very few works in mining useful
information from user’s reviews with this knowledge. One of
the earliest work is from Chandy et al. [20] who propose a
simple latent model to identify spamming reviews on Apple
AppStore. Recently, there are tools have been developed to
analysis app reviews, helping developers discover most
informative user reviews i.e. feature request, bug report, fraud
reviews detection. Besides information retrieval, there are also
other angles to analysis mobile app reviews [22, 24, 25, 32, 34].

Hu and Liu introduced an approach [2] to extract customers’
opinion features from their reviews. A case study of user
involvement in software evolution was conducted by Pagano
and Brügge [28]. Carreno and Winbladh also introduce an
approach for software requirements evolution, which is based
on the analysis of user comments [21]. Claudia and Rachel [1]

 Fig. 4. The Perplexity of E-LDA in different number of topics

 Fig. 5. The Perplexity comparison of LDA and E-LDA

TABLE VIII
EVALUATION OF TOPICS AND ENTITIES

App Recall Precision F-measure
Virtual Table Tennis 0.436 0.427 0.432
Bubble Shooter 0.534 0.528 0.531
Quora 0.864 0.832 0.847
Tumblr 0.823 0.714 0.765
YouTube 0.753 0.726 0.739
Speaker Boost 0.681 0.627 0.653
Average 0.682 0.642 0.661

586586

proposed a prototype MARA (Mobile App Review Analyzer)
to automatically retrieve request features of online reviews. The
features extracted in their work based on linguistic rules which
simply include some keywords that might be not sufficient for
practical review analysis. Chen et al. proposed a computational
framework AR-Miner [12] to extract and rank informative
reviews at sentence level. Gao and Xu introduce a AR-Tracker
which is capable of tracking the dynamics of mobile apps via
user review mining [35]. Phong et al developed a keyword
based tool MARK [37] for review analysis of mobile apps. The
analyst can use MARK to list the reviews most relevant to a set
of keywords, the tool can also draw trends over time of the
selected keywords. As for fraud opinion detection among users’
reviews, Akoglu et al. introduced a method that can exploits the
network effect among reviewers and products [31]. Palomba et
al. highlight the importance of user reviews in their work
tacking crowdsourced reviews to support evolution of
successful apps [33].

Based on the works above, our entity discovery algorithm of
SAR is distinctive in three ways. Firstly, instead of simply
extract feature request or bug reports, we get abstract hot entity
that users care most, the entity is modified and abstract by the
standard entity dictionary that we build from developer
documents. Secondly, our hot entities are different from
keywords, they focused on users’ hot expectations on different
aspects of the app. Finally, our method can be timing which is
dynamically refresh from the dataset, always keep on the trend
of users’ thinking.

B. User Reviews Classification
There are ways to classify the text, one of earlier work that

apply classification algorithms to mobile app reviews is the
work of Antoniol et al. [23] who conducted experiments on
classifying requests retrieved from reviews. They showed that
alternating decision trees, naïve Bayes classifiers, and logistic
regression can be used to accurately distinguish bugs from other
kinds of issues. Herzig and Just discussed how misclassification
impacts bug prediction [26]. Ohana and Tienery proposed a
supervised learning method that can be applied to sentiment
classification of user reviews [30]. Guzman et al. introduced a
taxonomy for classifying app reviews into categories relevant
for software evolution [36]. Maalej and Nabil introduced
several probabilistic techniques to classify app reviews into
four types: bug reports, feature requests, user experiences, and
ratings [38].

Our approach SAR for reviews classification distinguishes the
previous work, we modify the topic model LDA [4], adding a
hot entity layer which can stratify user reviews into a fine grain
structure, which provides developers an easier and faster way
to look into reviews, presenting reviews that relevant to entities
fiercely discussed by users.

C. Sentiment Analysis on Reviews
Sentiment analysis on reviews can help developers know

users’ satisfaction about the app. Thelwall et al. proposed a
method to detection the sentiment strength in short informal text
[9]. Later they also analysis the sentiment strength on social
web [10]. As for software evolution, Li and Zhang introduced
an approach to analyze users’ satisfaction toward software [5].
After that Fu and Lin conducted a sentiment analysis on user
feedback in a mobile app store [14], to help develop understand

why users hate the app. A study on free ios apps was conducted
by Khalid and Shihab [17]. Before that Iacob et al. introduced
a study of online reviews of mobile apps to figure out what users
complain about [18]. Guzman and Maaleij proposed an
automated approach that help developers filter, aggregate, and
analyze user reviews, and then extract user sentiments about the
identified features, giving them general score across all reviews
[11]. Later, Guzman et al. presented a feature and sentiment
centric retrieval approach which dynamically provides
developers with a diverse sample of user reviews [39].

With respect to computation of the sentiment on user reviews,
our novel model SAR combines the ratings and sentiment
strength on short text, which is distinctive among the previous
work, experiment shows that our mixed sentiment computing
method in SAR presents the users’ satisfaction of the app better
than the single sentiment strength on reviews.

VII. CONCLUSION
The experiment indicates that SAR is effective in mobile app

reviews analysis, proposing a nascent angle to get users
feedback for mobile app developers. It can help developers
improve their app design more efficient in three ways. Firstly,
it can extract hot entities automatically from raw reviews, these
entities are what users mostly concern about, it can let
developers quickly understand what aspects of the app are being
considered by users when they download the app. Secondly,
SAR can stratify reviews into different topics according to the
entity, it can provide the details of what the users are thinking
about apps, making developers easier to find those informative
content. Finally, SAR can assign sentiment value to each entity,
which provide an intuitive way for developers to notice if the
entity was favored by users. In addition, since SAR can
dynamically absorb reviews, it can also be applied to monitor
users’ behaviors toward apps, making developer be the first
person to know what aspects of app need to update or improve
to attract latent users, this would make developers more
competitive in their fellows. Another application of SAR is an
analysis tool for users, when they start to find a new app, SAR
can be applied to list the bad and good aspects of the app
downloaded by previous users. There are also more works
about SAR in future, the performance of E-LDA need to be
improved in order to achieve a higher recall and precision.

VIII. ACKNOWLEDGMENT
We thank Claudia Iacob, Phong Minh and Jing Wang for their

useful data source guide, as well as feedback and discussions.
We also thank our experiment participants for their time and
helpful comments. This work is supported by National High-
tech R&D Program (863 Program) (2015AA017202).

REFERENCES
[1] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature

requests from online reviews,” in MSR ’13 Proceedings of the 10th
Working Conference on Mining Software Repositories, pages 41-44.
IEEE Press, May 2013.

[2] M. Hu and B. Liu, “Mining opinion features in customer reviews,” in
Proceedings of the International Conference on Knowledge Discovery
and Data Mining – KDD ’04, pages 755-760. AAAI Press, July 2004.

[3] M. Harman, Y. Jia, and Y.Zhang, “App store mining and analysis: MSR
for app stores,” in Proc. of Working Conference on Mining Software
Repositories – MSR ’12 pages 108-11, June 2012.

587587

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” in
The Journal of Machine Learning Research, 3:993-1022, Mar. 2003.

[5] H. Li, L. Zhang, and J. Shen, “A user satisfaction analysis approach for
software evolution,” in Progress in Informatics and Computing (PIC),
2010 IEEE International Conference on, volume 2, pages 1093-1097.
IEEE, 2010.

[6] W. Maalej and M. P. Robillard, “Patterns of knowledge in API Refernce
Documentation,” in IEEE Transactions on software Engineering,
39(9):1264-1282, 2013.

[7] H. Manning, Christopher D., Schütze, “Foundations of statistical natural
language processing,” in MIT Press, 1991.

[8] D. Pagano and W. Maaalej, “User feedback in the appstore: an empirical
study,” in Proc. of the International Conference on Requirements
Engineering – RE ’13, pages 125-134, 2013.

[9] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas,
“Sentiment strength detection in short informal text,” in Journal of the
American Society for Information Science and Technology, 61(12):2544-
2558, Dec. 2010.

[10] M. Thelwall, K. Buckley, and G. Paltoglou, “Sentiment strength detection
for the social web,” in Journal of the American Society for Information
Science and Technology, 63(1): 163-173. Jan. 2012.
E. Guzman, W. Maalej, “How do users like this feature? A fine grained
sentiment analysis of app reviews,” in Requirements Engineering
Conference (RE), 20144 IEEE 22nd International. Aug. 2014. [Online].
Available:http://ieeexplore.ieee.org/document/6912257/

[11] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “AR-miner: Mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014. New York, NY, USA: ACM, 2014, pp. 767-
778. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2568225.2568263

[12] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to
information retrieval,” in Cambridge university press Cambridge, 2008,
vol. 1. [Online] Available:
http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

[13] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why people
hate your app: Making sense of user feedback in a mobile app store,” in
Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and data Mining, ser. KDD ’13. New York, NY,
USA: ACM, 2013, pp. 1276-1284. [Online]. Available:
http://doi.acm.org/10.1145/2487575.2488202

[14] R. Vasa, L. Hoon, K. Mouzakis, and A. Nohuchi. A. Noguchi, “A
preliminary analysis of mobile app user reviews,” in Proceedings of the
24th Australian Computer-Human Interaction Conference, ser. OzCHI
’12. New York, NY, USA: ACM, 2012, pp. 241-244. [Online]. Available:
http://doi.acm.org/10.1145/2414536.2414577

[15] L. Hoon, R. Vasa, J.-G Schneider, and J. Grundy, “An analysis of the
mobile app review landscape: Trends and implications,” in Tech. rep.,
Faculty of Information and Communication Technologies, Swinburne
University of Technology, Melbourne, Australia, Tech. Rep., 2013

[16] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile
users complain about? a study on free ios apps,” 2014.

[17] C. Iacob, V. Veerappa, and R. Harrison, “what are you complaining
about? a study of online reviews of mobile applications,” in Proceedings
of the 27th International BCS Human Computer Interaction Conference.
British Computer Society, 2013, p. 29.

[18] G. Bavota, M. Linares-Vasquez, C. Bernal-Carden, M. Di Penta, R.
Oliveto, and D. Poshyvanyk, “The impact of api change- and fault-
pronesness on user ratings of Android apps,” Software engineering, IEEE
Transactions on, vol. 41, no. 4, pp. 384-407, April 2015.

[19] R. Chandy and H. Gu, “Identify spam in the ios app store,” in Proceedings
of the 2nd Joint WICOW/AIRWeb Workshop on Web Quality, ser.
WebQuality, ’12. New York, NY, USA: ACM, 2012, pp. 56-59. [Online].
Available: http://doi.acm.org/10.1145/2184305.2184317

[20] L. Galvis Carreno and K. Winbladh, “Analysis of user comments: An
approach for software requirements evolution,” in Software Engineering
(ICSE), 2013 35th International Conference on, May 2013, pp. 582–591.

[21] M. Gomez, R. Rouvoy, M. Monperrus, and L. Seinturier, “A
recommender system of buggy app checkers for app store moderators,”
Ph.D. dissertation, Inria Lille, 2014.

[22] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc, “Is
it a bug or an enhancement?: A text-based approach to classify change
requests,” in Proceedings of the 2008 Conference of the Center for

Advanced Studies on Collaborative Research: Meeting of Minds,
CASCON ’08, pages 23:304–23:318. ACM, 2008.

[23] M. Bano and D. Zowghi, “A systematic review on the relationship
between user involvement and system success.” Information & Software
Technology, 58:148–169, 2015.

[24] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang,
“App store analysis: Mining app stores for relationships between
customer, business and technical characteristics.” Reseach Note
RN/14/10, UCL Department of Computer Science, 2014.

[25] K. Herzig, S. Just, and A. Zeller, ‘‘It’s Not a Bug, It’s a Feature: How
Misclassi• cation Impacts Bug Prediction,’’ in Proceedings of the 2013
International Conference on Software Engineering, pages 392---401. IEEE

Press, 2013.
[26] T. Johann and W. Maalej. ‘‘Democratic mass participation of users in

requirements engineering?’’ In Requirements Engineering Conference
(RE), 2015 IEEE 23rd International, 2015.

[27] D. Pagano and B. Brügge, ‘‘User involvement in software evolution
practice: A case study,’’ in Proceedings of the 2013 International
Conference on Software Engineering, pages 953---962. IEEE Press, 2013.

[28] F. Li, H. Shen, T. He, “Tag-Topic model for semantic knowledge,” in
Natural Language Processing and Knowledge Engineering (NLP-KE),
2011 7th International Conference on, 27-29 Nov. 2011.

[29] B. Ohana, B. Tierney, “Supervised learning methods for sentiment
classification with RapidMiner,” in Intelligent Computer Communication
and Processing (ICCP), 2010 IEEE International Conference, on 26-28

Aug. 2010.
[30] L. Akoglu, R. Chandy, C. Faloutsos, “Opinion fraud detection in online

reviews by network effects,” in Proceedings of ICWSM, 2013
[31] X. Xu, K. Dutta, A. Datta, “Functionality-based mobile app

recommendation by identifying aspects from user reivews,” in Thirty
Fifth International Conference on Information Systems, Auckland 2014

[32] F. Palomba, M. Linares, G. Bavata, R. Oliveto, “User reviews matter!
Tracking crowdsourced reviews to support evolution of successful apps,”
in Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on 29 Sept.-1 Oct. 2015.

[33] M. Liu, C. Wu, X. Zhao, C. Lin, X. Wang, ‘‘App relationship calculation:
an iterative process,’’ in IEEE Transactions on Knowledge & Data
Engineering, vol.27, no. 8, pp. 2049-2063, Aug. 2015.

[34] C. Gao, H. Xu, J. Hu, Y. Zhou, “AR-Tacker: tack the dynamics of mobile
apps via user review mining,” in arXiv:1505.04657 [cs.IR]. [Online].

Available: http://arxiv.org/abs/1505.04657
[35] E. Guzman, M. EI-Halaby, B. Bruegge, “Ensemble methods for app

review classification: an approach for software evolution,” in Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference, on 9-13 Nov. 2015.

[36] P. Vu, T. Nguyen, H. Pham, T. Nguyen, “Mining user opinions in mobile
app reivews: a keyword-based approach,” in arXiv:1505.04657 [cs.IR].

[37] W. Maalej, H. Nabil, “Bug report, feature request, or simply raise? On
automatically classifying app reviews,” in IEEE International
Requirements Engineering Conference, pp 116-125, 2015.

[38] E. Guzman, O. Valeo, B. Bruegge, ‘‘Retrieving diverse opinions from app
reivews,’’ in Proceedings of the 10th Working Conference on Mining
Software Repositories, May 18-19, 2013, San Francisco, CA, USA.

[39] Z. Xie, S. Zhu, “AppWatcher: unveiling the underground market of
trading mobile app reviews,” in 8th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, NYC, USA, June 24-26, 2015.

[40] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Ef• cient estimation of
word representations in vector space,’’ CoRR, vol. abs/1301.3781, 2013.
[Online]. Available: http://arxiv.org/abs/1301.3781

588588

