
TEMPORAL VERIFICATION OF NONLINEAR PROGRAMS

by

Yuandong Cyrus Liu

A DISSERTATION

Submitted to the Faculty of the Stevens Institute of Technology
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Yuandong Cyrus Liu, Candidate

ADVISORY COMMITTEE

Eric Koskinen, Chairman Date

David Naumann Date

Jun Xu Date

Daniel Dietsch Date

Hang Liu Date

STEVENS INSTITUTE OF TECHNOLOGY
Castle Point on Hudson

Hoboken, NJ 07030
2022



©2022, Yuandong Cyrus Liu. All rights reserved.



iii

TEMPORAL VERIFICATION OF NONLINEAR PROGRAMS

ABSTRACT

Practical software systems often have nonlinear behaviors due to expressions or

statements in their source code that involve bitvectors, polynomials, exponentials, etc. Ver-

ifying temporal properties of these systems is challenging, going beyond the power of many

existing temporal verification tools, which are more focused on linear programs.

This dissertation aims to improve existing temporal verification techniques to sup-

port nonlinear programs. We introduce techniques to transform nonlinear program behav-

iors into a linear space, where existing temporal verification tools can then be exploited.

For bitvector programs, we present a theory called bitwise branching that introduces new

paths to over-approximate bitvector operations with linear constraints in common cases,

falling back on the original bitvector expression otherwise. With these new paths, often

the fallback bitvector path is infeasible and we show that we can better exploit the well-

developed integer reasoning and interpolation of verification tools. We further develop a

novel binary verification toolchain to verify temporal properties of decompiled programs

by retargeting the decompilation process and employing our bitwise branching.

We next look beyond bitvectors to other types of nonlinear programs like poly-

nomials, and explore an approach that combines dynamic analysis with static temporal

verification. To that end, we dynamically infer candidate invariants at program locations

involving polynomial behaviors, and use static analysis to validate those candidates. These

candidates may not hold, so we then describe a refinement algorithm to iteratively refine a

Boolean combination of linear expressions that captures the original polynomial behavior.

We show that nonlinear expressions in programs can then be replaced with our synthesized

linear expressions, and it enables temporal verification tools to be applied to this nonlinear



iv

domain.

Author: Yuandong Cyrus Liu

Advisor: Eric Koskinen

Date: December 15, 2022

Department: Computer Science

Degree: Doctor of Philosophy



v

To All Scientists.



vi

Acknowledgments

This dissertation would not have reached completion without the help and support

from the people I have been connected with. Firstly, I would like to thank and express my

sincere gratitude to my advisor Prof. Eric Koskinen for his support during my PhD study,

for his patience, motivation, and immense knowledge. He came up with the interesting

subject of study and has taught me to conduct research, write clearly, prepare interesting

presentations, and think both about the big picture and minute details. He also never hesi-

tated to share his knowledge regarding both scientific topics and a multitude of soft skills

to help and support me. He encourages me to step out of my comfort zone and pushes me

forward. His guidance helped me in all the time of research and writing of this dissertation.

I could not have imagined a better advisor and mentor for my PhD study, I am forever

grateful! Besides my advisor, I would like to thank the rest of my committee members:

Prof. David Naumann, Prof. Jun Xu, Prof. Daniel Dietsch, and Prof. Hang Liu for their

insightful comments and encouragement.

I also had the opportunity to meet amazing scholars, researchers, and fellow stu-

dents. I am grateful to Chanh for always being supportive and kind not only towards me,

but towards all other people, he has guided me through technical details and helped me

implement our theories and methodologies. To Chengbin for helping me implement binary

analysis and he is always patient with my questions. To Daniel who helped me with my ex-

periments and showed me a rigorous research attitude but he can always convey them with

humor. To Timos and Vu for being generous with their time and insights to our research

problems, technical details, and paper writing, for many times both of them stayed up late

with me before our deadlines.

During my studies, I have been lucky to share an office with extraordinary col-



vii

leagues and take courses from our faculty members. Thanks to my lab peers Ramana,

Parisa, Mihai, and Ayomide for helping me practice before my defense talk, thanks to

Michael and the whole Cypress group for the weekly seminar, giving me chance to present,

practice and have valuable feedback on all aspects, which helped me improve a lot. Also

thanks to Eduardo, Sandeep, Dave, and Georgios, it’s always been a pleasure taking their

courses. And thanks to our best graduate academic advisor Jannine, who has always been

helpful, for countless times I knocked on her door and she is always there for help, greeting

me with her warm smile, thank you for that!

I thank my family and my friends for their infinite support throughout my PhD study.

To my sister and my parents whom I’m always happy to call on weekends, update them on

my progress and my personal life. To my good friend Evaristo for the great discussions

about culture and research in our own fields. We workout, running, and travel together,

imagining each other’s future life, and sharing the pressure from our research, I can always

seek positive energy from him. To Adrien who is always considerable and kind. To Aida

who can always gather everyone for interesting festivals and celebrations. To Estelle who

stayed with me and encouraged me during my early PhD years, she is always warm to me.

I’m fortunate to meet a group of international friends Nina, Bogdan, Jezabel, Marc, Lara,

Mojtaba, Sheri, Farbod, Darwin, Juanra, and Koss, we had great time during the weekends’

gatherings, dinners, and lunches.

Thank you all for being part of this incredible journey of my life!

Yuandong Cyrus

Liu

November 2022



viii

Contents

Abstract iii

Dedication v

Acknowledgments vi

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Verification of Bitvector Programs . . . . . . . . . . . . . . . . . . 6

1.4.2 Binary Analysis with Formal Methods . . . . . . . . . . . . . . . . 8

1.4.3 Dynamic Verification . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Contributions and Dissertation Organization . . . . . . . . . . . . . . . . . 15

2 Foundations 18

2.1 Program Semantics and Transition Systems . . . . . . . . . . . . . . . . . 18

2.1.1 Boogie Program . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



ix

2.1.3 Logical Transition Relation . . . . . . . . . . . . . . . . . . . . . 21

2.2 Temporal Logic and Büchi Automaton . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 ω Language and Büchi Automaton . . . . . . . . . . . . . . . . . . 24

2.3 LTL Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Principal Verification Tools and Dynamic Verification . . . . . . . . . . . . 26

2.4.1 Static Temporal Verification . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Dynamic Verification . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Temporal Verification of Bitvector Programs 30

3.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Bitwise-branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Reachability of Bitvector Programs . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Termination and LTL of Bitvector Programs . . . . . . . . . . . . . . . . . 40

4 Temporal Verification of Decompiled Binaries 47

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 LTL Verification of Decompiled Binaries . . . . . . . . . . . . . . . . . . 50

4.3 Verification Oriented Translations for Decompiled Binaries . . . . . . . . . 53

4.4 DARKSEA: A Toolchain for Temporal Verification of Lifted Binaries . . . . 58

4.4.1 FABE in DARKSEA . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.1 Termination of lifted binaries . . . . . . . . . . . . . . . . . . . . . 62

4.5.2 LTL of lifted binaries . . . . . . . . . . . . . . . . . . . . . . . . . 64



x

5 Temporal Verification of Polynomial Programs 67

5.1 Overview Through A Motivating Example . . . . . . . . . . . . . . . . . . 71

5.2 Dual Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Static Validation Through Reachability . . . . . . . . . . . . . . . . . . . . 82

5.4 Dynamic Generalization of Counterexamples . . . . . . . . . . . . . . . . 86

5.5 Convergence and Termination of DRNLA . . . . . . . . . . . . . . . . . . 89

5.6 DRNLA Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7.1 Nonlinear CTL Benchmarks . . . . . . . . . . . . . . . . . . . . . 93

5.7.2 DRNLA Synthesizing Results . . . . . . . . . . . . . . . . . . . . 95

5.7.3 Enabling CTL Verification of NLA Programs . . . . . . . . . . . . 98

6 Conclusions 102

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A Appendix for All Chapters 1

A.1 Proofs of Bitwise Branching Rules (Sec. 3.2) . . . . . . . . . . . . . . . . 1

A.2 Full Lifted Code for PotentialMinimizeSEVPABug (Chapter. 4) . . . . . . 7

A.3 Bug in GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.4 DRNLA on CTLNLABench-DYNAMITE benchmarks . . . . . . . . . . . 19

A.5 DRNLA on CTLNLABench-PLDI13 benchmarks . . . . . . . . . . . . . 22

A.6 DRNLA on Handcrafted benchmarks . . . . . . . . . . . . . . . . . . . . 24

Vita 28



xi

List of Tables

3.1 Performance of ULTIMATE on bitvector programs, e.g. drawn from Sean

Andersen’s “Bit Hacks” repository, using various SMT solvers, with and

without bitwise branching (BWB). . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Static verification tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Termination results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Details for APROVE termination benchmarks. . . . . . . . . . . . . . . . . 43

3.5 Details for TermBitBench. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 LTL benchmarks experiment overview. . . . . . . . . . . . . . . . . . . . . 45

3.7 Details for LTL Bithack benchmarks. . . . . . . . . . . . . . . . . . . . . . 45

3.8 Details for LTLBitBench. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Termination of Lifted Binaries, with and without DARKSEA translations. . 62

4.2 Details for termination verification of vanilla MCSEMA binary lifting. . . . 63

4.3 Details for termination verification of DARKSEA translated lifted binaries. . 64

4.4 ULTIMATE vs. DARKSEA on lifted programs with LTL properties. . . . . . 65

4.5 Details for LTL lifted binary benchmarks, using vanilla MCSEMA ver-

sus DARKSEA’s translated IR and vanilla ULTIMATE versus DARKSEA’s

bitwise-branching (Section 3.2). Gray cells are unsound, green cells use

slightly different settings (enabled SBE). . . . . . . . . . . . . . . . . . . . 66

5.1 DRNLA’s rewrite results for CTLNLABench-DYNAMITE . . . . . . . . . 96

5.2 DRNLA’s rewrite results for CTLNLABench-PLDI13 . . . . . . . . . . . 97

5.3 DRNLA’s rewrite results for handcrafted benchmarks . . . . . . . . . . . . 97



xii

5.4 Example output of DRNLA on CTLNLABench-DYNAMITE . . . . . . . 97

5.5 Example output of DRNLA on CTLNLABench-PLDI13 . . . . . . . . . . 98

5.6 DRNLA’s improvements for CTLNLABench-DYNAMITE . . . . . . . . . 99

5.7 DRNLA’s improvements for CTLNLABench-PLDI13 . . . . . . . . . . . 99

5.8 DRNLA’s improvements for handcrafted benchmarks . . . . . . . . . . . . 100



xiii

List of Figures

2.1 Syntax of Boogie expressions in the ULTIMATE program analysis framework. 19

2.2 Syntax of Boogie expressions with bitwise operators. . . . . . . . . . . . . 19

2.3 Boogie statement syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Transformed Version for Example 2. . . . . . . . . . . . . . . . . . . . . . 32

3.2 Rewriting rules for arithmetic expressions. . . . . . . . . . . . . . . . . . . 34

3.3 Weakening rules for relational expressions and assignments. ople ∈

{<,<=,==,:=}, opge ∈ {>,>=,==,:=}, and opeq ∈ {==,:=} . . . . 35

3.4 Weakening rules application in CFA (simplified for demonstration). . . . . 36

3.5 Bitwise branching algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 An LTL example from ULTIMATE repository. . . . . . . . . . . . . . . . . 48

4.2 Challenges involved in reasoning about the lifted binary of the program in

Fig. 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Example showing our argument removal. In the main function before our

simplification, tmp, which points to a global data structure g_state, is

passed to the foo function and its alias tmp1 is further passed to error.

After our simplification, all the arguments are removed, and the accesses to

tmp and tmp1 are fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 The work-flow of our de-compilation. . . . . . . . . . . . . . . . . . . . . 58

5.1 Cases layout for bpos of b and bneg of ¬b. . . . . . . . . . . . . . . . . . . . 69

5.2 Nonlinear programs with valid and invalid CTL properties. . . . . . . . . . 72



xiv

5.3 Random input snapshots for bpos and bneg. . . . . . . . . . . . . . . . . . . 73

5.4 Overall flow of the Dual Rewriting algorithm. . . . . . . . . . . . . . . . . 76

5.5 Algorithm DYREFINE: Overall strategy synthesize an alternative to

boolean condition b by refining a pair of conditions bpos, bneg, so that bpos

captures the conditions where b holds and bneg captures the conditions

where ¬b holds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Depictions of how candidate LIA conditions bpos and bneg align with states

where b holds (in pink) and what actions are needed to remedy. . . . . . . . 79

5.7 Demonstration of instrumentation for static validation. . . . . . . . . . . . 84

5.8 Algorithm DYGENERALIZE: Generalizing a single counterexample cex be-

yond a single model, to a formula that captures many states that could reach

the same counterexample location. . . . . . . . . . . . . . . . . . . . . . . 88

5.9 Algorithm DYREFINE′: A revised version of DYREFINE from Fig. 5.5 that

now employs dynamic counterexample generalization, and uses the convex

hull for disjunction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.10 DRNLA implementation overview. . . . . . . . . . . . . . . . . . . . . . . 92



1

Chapter 1

Introduction

In general, a software verification task is, given a program model P and a property ϕ,

showing that all behaviors of P satisfy ϕ. Verification challenges arise from different

types of programs and types of properties to be verified. Program properties can be de-

composed into safety properties and liveness properties. A safety property describes that

nothing bad happens to the program, while a liveness property states that something good

will eventually occur in the program. Both safety and liveness properties can be formally

characterized [13]. For liveness properties like termination, non-termination, and Linear

Temporal Logic (LTL), existing tools [159, 16, 72, 110, 86, 32, 27] are effective in prov-

ing programs with linear arithmetic assignments and loop guards, but suffer with nonlinear

programs that have, for example bitvector and polynomials expressions. In this disserta-

tion, we tackle verification challenges in nonlinear programs (e.g. bitvector, polynomial.)

and temporal properties. In this chapter, we first introduce background about static and

dynamic analysis techniques in program verification, and discuss various types of nonlin-

ear programs in Section 1.1, we address research challenges of interest in Section 1.2, and

related work in Section 1.4. Common foundations are introduced in Chapter 2, and we

dedicate the remaining chapters to the details of our approaches that solve the problems

being addressed.

1.1 Background

There are many domains like medical/financial systems and automatic controlling systems

that require high assurance of safety and reliability. Testing is an effective way to find

program bugs before it’s released. However, traditional program testing (requiring human



2

developers to design testing cases and run the program on them) is error-prone and the cov-

erage of testing cases is limited. Automatic verification techniques that use static program

analysis to determine program properties, provide a precise and effective way to verify

program properties and expose program vulnerabilities. Static program analysis in general

relies on a wide range of formal methods like type systems, abstract interpretation, satisfi-

ability modulo theories (SMT), model checking, etc. Some of these methods have started

to scale to solve problems of interesting size, like system-level programs, and they can also

verify properties of programs written in various languages like C and Java. SMT solvers

serve as a foundation for these automatic verification tools, and have increased theories1

to support for different types of programs. Recent research work [19, 133, 104, 123, 150]

also have improved the efficiency of SMT solvers, for example, the Z3 solver can work

with millions of free variables and still find solutions in seconds.

Software in many situations uses bitwise operations heavily, such as system level

software which needs to interact with device drivers and check the state of certain drivers

using bitwise operations. Bitwise operations are also more efficient in computing and

therefore used for code optimization. Another pervasive domain of bitvector programs

is binaries. Binary code executes directly on computers, and compilers that transform and

optimize source code to machine code could introduce unintended behaviors to the pro-

gram. Verifying binary code can find bugs, in the running systems, that are impossible to

be exposed in source code level verification. Verifying binary code directly is challenging,

as high level structure and type information from source program get lost. One common

way to tackle this information lost is to de-compile the binary into a high level representa-

tion like C, a de-compiled program that is heavy in bitwise operations. Although there are

active research and effective tools in binary de-compilation, not much work has been done

with formal verification of binaries, in recent years, there has been an increasing interest in

1http://smtlib.cs.uiowa.edu/theories.shtml



3

binary analysis combined with formal methods. Existing verification tools face hurdles in

verifying de-compiled code, due to the heavy use of bitwise operations in low level code,

in which besides code optimization, another common case to use bitwise operations is to

simulate the instruction jumping state.

Non-linear arithmetic (polynomials, square root, logarithm, etc.) is common in sci-

entific computing software, reactive systems and practical distributed systems that often

have infinite temporal behaviors. For example, a real-time server protocol responding to

clients, or a distributed ledger performing transactions correctly on time with desired con-

ditions etc., verifying temporal properties against them is critical. In summary, in this

dissertation, we focus on the temporal verification of non-linear programs that have bitwise

operations and higher-order of polynomial operations.

1.2 Challenges

Despite the importance of verifying temporal properties in practical systems discussed in

the previous section, temporal verification tools are very much restricted to linear integer

programs, temporal logics like LTL express properties that necessarily involve a notion of

time, however it can easily face state explosion problem. For bitvector programs, verifi-

cation tools [152, 159] rely on SMT solvers with bit-vector theory support. Yet fix-sized

bitvector theory in practice, using bit-blasting technique to encode integers, introduces

fresh variables for every single bit of that integer, which can lead to an exponential growth

of bit size [105]. Finding valid program invariants is crucial for both safety and liveness

properties like termination and LTL, yet verification tools are often unable to prove invari-

ants for loops over the bitvector domain (requires more complicated invariants), as well as

non-linear arithmetic, and they abort the analysis once facing the nonlinear program. LTL

verification of bitvector program is still somewhat unexplored, as seen by the lack of LTL



4

verification tasks listed in SV-COMP [8] prior to our work. For other types of verification

tasks (e.g. reachability, termination), there are limited bitvector operations, often irrelevant

to verification. Therefore, for a better evaluation of verification tools in liveness verification

tasks over non-linear programs, a richer set of benchmarks are required.

Bitvectors are also heavily used in decompiled binaries, besides difficulties in tack-

ling bitwise operations, there are well-known open questions in binary decompilation rang-

ing from instruction recovery, function boundary discovery in disassembly (mapping from

machine code to assembly code), to precise control flow graph reconstruction in code lift-

ing (mapping from assembly code to intermediate representation). Although existing bi-

nary lifting tools (like McSema [63]) and binary analysis frameworks [37] have achieved

good performance and accuracy, in both binary disassembly and lifting, their goal of lifted

code is targeted for recompilation instead of verification. Software verification tools are

unable to handle the de-compiled/lifted code for various reasons like metadata and register

information inherited from machine code. There is no complete tool having capabilities in

binary disassembly, and lift assembly into decompiled code for LTL verification.

Programs that have a higher order of polynomial operations are another class of

nonlinear programs that are out of reach by existing temporal verification tools. Static

analysis also struggles on finding nonlinear invariants. Dynamic analysis supports more

expressive invariants and scales well to large and complex programs [137]. It can learn

about program behaviors from concrete data sets, free of reasoning about abstract expres-

sions from program source code. Dynamic analysis is effective finding convex shape of

polynomial expressions in Integer domain. Unfortunately, dynamic analysis focus on ex-

ploring a few program executions therefore it is only correct with respect to the explored

paths, while static analysis is exploring all possible program paths but is limited to certain

kinds of target programs and simple invariants. One solution we present is to combine

them to leverage benefits of both analyses, however, more questions arise as to how we



5

can use dynamic analysis to learn invariants of non-linear programs precisely and hook

back the learned invariants to original programs, preserving the program semantics, so that

verification tools can return a sound result.

1.3 Solutions

While verification tools that work with static analysis facing challenges (discussed in 1.2)

in temporal verification of bitvector programs, we introduce a new bitwise branching theory

to approximate bitvector programs with linear constraints. Our bitwise branching theory

introduces rewriting rules for bitvector programs. It helps transform bitvector programs

with linear branches soundly, verification task can be performed so that reasoning bitwise

operation is often unneeded. We show that bitwise branching enables LTL verification of

bitvector programs, and we implement bitwise branching in software analysis framework

ULTIMATE [159]. We incorporate this implementation as a sub-routine in our complete

binary verification toolchain DARKSEA, which is able to decompile the binary into a C

source program, and verify LTL properties against it.

In this dissertation, for temporal verification of polynomial programs, we present a

hybrid program analysis that leverage primary advantages of both static and dynamic anal-

ysis for non-linear programs. We use dynamic analysis to infer candidate linear invariants

at the location of nonlinear expression, then replace those expressions with inferred linear

invariants, and then use static analysis to validate the inferred results. On top of this dual

analysis, we design a refinement algorithm to refine the dynamic results with counterex-

amples from static validation. When refinement converges, the algorithm terminates with

a precise set of linear expressions that cover the whole nonlinear behaviors in the integer

domain.



6

1.4 Related Work

We have discussed that bitvector operations and nonlinear arithmetic are prevalent in prac-

tical systems, especially in decompiled programs and critical reactive systems. One of the

biggest challenges in verification of bitvector programs is solving constraints in bitvectory

theory that is used by SMT solvers. There are research works focused on effective bitvec-

tor solving in source code, as well as formally verified de-compilation in binary analysis

(heavily involved with bitvecor operations). On the other side, using constraint solving

with dynamic analysis for program testing is gaining more attention in security research,

more research efforts have been put on introducing static analysis in dynamic program test-

ing like symbolic execution, achieving better performance code coverage. In this section,

we discuss related research work in bitvector reasoning, binary de-compilation with formal

methods, verification of non-linear programs (including bitvector programs and nonlinear

arithmetic programs), and dynamic analysis / hybrid analysis in automatic program verifi-

cation.

1.4.1 Verification of Bitvector Programs

Static verification tools often rely on SMT solvers as backend, recently with the increasing

support of fix-sized bitvector theory in SMT solvers, there are active works in improving

the efficiency of bitvector reasoning, with many automatic verification tools have expanded

the capabilities to termination verification of bitvector programs, but still, LTL verification

over bitvector and nonlinear programs are missing.

Bitvector reasoning. Outside of the context of verifying lifted binaries, many works

have investigated reasoning techniques for bitvector expressions and operations. Numerous

works provide support for bitvector reasoning inside SMT solvers (e.g. [170]). Kroening



7

et al. [106] describe a method of predicate image over-approximation, the algorithm can

be used to compute images of predicates using bit-vector logic, but with the sacrifice of

some precision. He and Rakamarić [88] examine spurious counterexamples introduced

by over-approximation of bitwise operations in SMT solving, the algorithm performs type

analysis to transform both a counterexample and program. However, in the case of binary

decompilation, type information are lost during the compilation, performing type analysis

is challenging. Mattsen et al. [117] describe how to use a BDD-based abstract domain to

improve reasoning about indirect jumps and integrated their work into Jakstab. Bryant et

al. [35] describe an SAT-based decision procedure that iteratively constructs an abstraction

of a bit vector formula.

Termination and LTL for bitvector programs. Other works have targeted reasoning

about termination of bit-precise source code programs. Cook et al. [51] use Presburger

arithmetic for representing bitvector programs and rank functions. Chen et al. [40, 41]

employ lexicographic rank function synthesis for bit precision in an interprocedural ter-

mination analysis, through a mixture of under- and over-approximation. They rely on the

bit-precision of an underlying SMT solver. David et al. [58] propose termination and non-

termination analysis which is able to generate nonlinear, lexical ranking functions and non-

linear recurrence sets for floating-point arithmetic, and proving termination of programs

with pointer arithmetic is discussed in Ströder’s work [155]. Earlier, Falke et al. [69] derive

linear arithmetic approximations of bitvector operations by introducing rewriting rules that

create a large disjunction of cases, while for temporal verification, this puts a large burden

on the solver. By contrast, our bitwise-branching approach creates an if-then-else expres-

sion for each scenario, shifting the burden to more efficient automata reasoning instead.

The approach of Falke et al. is implemented in the KITTEL tool with the only support for

termination. Hensel et al. [95] extends their previous work on automatic termination of C



8

programs over mathematical integers to bitvectors, instead of using SMT solving in fixed-

size bitvector theory, they represent the relation between bitvetors through corresponding

relations over Z, this approach is implemented in verification tool APROVE [76]. Urban et

al. [161] present an approach to learn the bits of information from terminating executions

and synthesize ranking functions from under-approximation of these terminating program

states, it has been implemented in SEAHORN tool2. Similar to SEAHORN (a LLVM based

verification framework), SMACK [143] translates LLVM compiler’s intermediate repre-

sentation (IR) into Boogie [23] intermediate verification languages with limited support for

bitvector programs. However, not all the LLVM IR can be correctly translated into Boogie,

especially when dealing with lifted binaries. Besides compiler intermediate representa-

tion, there are also works focus on the termination of virtual machines like Java byte-

code [141, 12]. Spin 3 is a well-known open-source software verification tool, it provides

a rich LTL libraries [65] potentially can be used for other temporal verification techniques

of high level programs. Despite many related works on bitvector reasoning, no prior works

have focused on verifying temporal properties of lifted binaries and bitvector programs.

1.4.2 Binary Analysis with Formal Methods

From binary code to high level de-compiled code, binary de-compilation, involves multiple

steps, i.e. disassembly that recovers instructions from raw binary, function boundary dis-

covery, control flow construction, and decompiling (lifting) that translates assembly code

to a structured intermediate representation (IR), and finally, we can map IR to decomplied

program. Recent research works have started to focus on formal decompilation, lifting

validation/verification [167], precise control flow, and binary verification in general.

2https://seahorn.github.io/
3https://spinroot.com/spin/whatispin.html

https://seahorn.github.io/
https://spinroot.com/spin/whatispin.html


9

Disassembly. Disassembly is the process of recovering instructions and structural infor-

mation (e.g. functions and control flow) from the binary, providing the basis for all types

of binary analysis. For verification, an essential property of disassembly is correctness

and many recent works strive for this property. The Jakstab project [103, 102] focuses on

accurate control flow reconstruction in the disassembly process. This work proposes an

abstract domain called Bounded Address Tracking to resolve targets of control flow trans-

fers, it is focused on correctness in control flow recovery instead of verification. Brumley

et al. [34] described BAP, a tool and framework for static disassembly of stripped binaries.

It models the semantics of the instructions and provides all-sided APIs to support vari-

ous analyses, high-level verification analysis is still missing. The UCSB group released

Angr [151]. Angr includes comprehensive symbolic execution and value-set analysis to

facilitate the correctness of binary disassembly (in particular control flow reconstruction).

Commercial IDA Pro [71] demonstrates higher accuracy than the above disassemblers [15]

and partly it also leverages sound approaches such as value-set-analysis [20] to resolve the

complex constructs that make disassembly challenging. Casinghino et al. [37] compared

BAP with Angr [151] in terms of the ability to perform value-set analysis and call graph

reconstruction.

Precise de-compilation. Raw disassembly output is highly architecture-specific, which

is complex for verification. A widely adopted strategy to improve matters is to further

de-compile to higher-level representations such as LLVM IR or C code. Hex-Rays Decom-

piler [4], Ghidra [136], and Snowman [59] endeavor to reconstruct the abstractions that

were present in the original source code. Although these tools produce de-compiled results

that may seem ready for verification, they often use aggressive but error-prone inferences.

As a consequence, these de-compilers are rarely used for verification purposes. Contrary

to the above de-compilers, many recent papers are focused on “low-level” aspects of the



10

binary and aim at precise de-compilation. Roessle et al. [147] described a new strategy

for de-compiling x86-64 into a big step semantics. The authors present a formal seman-

tics of x86-64, prove equivalence, and describe a method for automatically de-compiling

x86-64 into the big-step semantics. Earlier, others proposed the idea of decompilation-into-

logic (DiL) [120, 121, 122] that directly translates assembly code into logic, which can be

implemented using interactive theorem provers such as HOL4 4. While DiL provides a

rich environment for precise reasoning about fine-grained instruction-level details, it incurs

high complexities for reasoning about more coarse-grained properties (reasoning bloated

instruction level details is unnecessary in these cases.) such as reachability, termination,

and temporal logic. In more recent work, Verbeek et al. [168] build on the formal seman-

tics of Roessle et al. [147] and describe techniques and their tool FoxDec to decompile into

re-compilable code, exploiting semantics for more soundness guarantees. In our works, we

focus on coarse-grained properties such LTL and doing so automatically by employing au-

tomatic abstraction techniques. The close de-compilation technique is open source project

McSema [63] which aims at coarse-grained goals such as re-compilation, it simulates the

effects of instructions without aggressive inferences, this avoids introducing errors to de-

compilation. McSema gained popularity in the reverse engineering community due to its

re-compilation (disassembling and lifting binaries with the goal of compiling it back to bi-

nary again) capabilities, however, it prevents verification tools from handling the low-level

complexities (e.g. inline-assembly) by abstracting over some details.

Verify decompiled programs. Other recent works focus on the correctness of the decom-

pilation/lifting process itself. This direction requires a form of refinement reasoning that

the lifted code simulates the binary, akin to translation validation and certified compilation.

These works do not target verifying the behavior of the binary itself but are nonetheless im-

4https://hol-theorem-prover.org/

https://hol-theorem-prover.org/


11

portant orthogonal research steps since our LTL verification of decompiled binaries relies

on sound lifting. Dasgupta et al. [56] describe a translation validation on x86-64 instruc-

tions that employs their prior work on extensive formal semantics for x86-64 (Dasgupta et

al. [57]). They observe that instruction-level validation can then be used to enable program-

level translation validation and have applied their work to improve McSema (which part of

our work relies on). Metere et al. [119] use HOL4 to verify a translation from ARMv8

to the BAP [34] IR. Hendrix et al. [93] discuss their ongoing work on verifying the trans-

lation performed by their lifting tool reopt on a block-by-block basis with some block-

and function-level annotations. Other works (e.g. the Sail language [175, 17]) have also

targeted formal semantics of instruction set architectures.

1.4.3 Dynamic Verification

Nonlinear polynomial relations arise in many safety-and security-critical applications [29],

an alternative way to software verification of non-linear programs is dynamic verification,

adapting traditional model checking to systematic testing. Dynamic analysis is effective to

execute any complex programs but has partial correct results (it is correct with respect to

execution paths). Dynamic model checking, also referred to as systematic testing, was first

proposed for the concurrent programs [80], and more recently Godefroid [81] discussed

the pros and cons of dynamic model checking. Previously, Groce et al. [82] extends model

checking with dynamic analysis.

Dynamic inference of invariants. Program invariant is essential in proving safety and

further liveness property, in the last decades, there are much work with static analyses in-

ferring non-linear invariants [70, 146, 145, 84, 85, 83], but with restriction of program types

like polynomial equalities or non-nested loops. With a dynamic approach, inferring more

complex non-linear invariants have been studied. The well-known dynamic invariant tool



12

Daikon [67, 66] infers candidate invariants under various templates over concrete program

states. The tool comes with a large set of templates that it tests against observed traces, re-

moving those that fail and returning the remaining ones as candidate invariants. DIG [129]

focuses on numerical invariants and therefore can compute more expressive (e.g., nonlin-

ear) numerical relations than those supported by Daikon’s templates. The pure dynamic

analysis in DIG supports numerical invariants of the forms nonlinear equalities [128], oc-

tagonal inequalities [129], and max/min-plus inequalities [131]. Sharma et al. [149, 139]

proposed a hybrid dynamic and static analysis to generate equality invariants, they use DIG

to compute nonlinear equality invariants from concrete traces and verify the candidate in-

variants with SMT solving. The works from NumInv [126] and SymInfer [127] combined

the dynamic analysis from DIG to infer nonlinear invariants with symbolic execution to

remove spurious results. PIE [139] and ICE [75] also use a guess and check approach to

infer invariants to prove a given specification. To prove a property, PIE iteratively infers

and refined invariants by constructing necessary predicates to separate (good) states satis-

fying the property and (bad) states violating that property. ICE uses a decision learning

algorithm to guess inductive invariants over predicates separating good and bad states. The

checker produces good, bad, and “implication” counterexamples to help learn more precise

invariants. For efficiency, they focus on octagonal predicates and only search for invariants

that are boolean combinations of octagonal relations. In general, these techniques focus on

invariants that are necessary to prove a given specification, and the quality of the invari-

ants is dependent on the target specification. More recently, [171] described a method for

inferring invariants through a form of neural networks. The technique uses a Continous

Logic Network to learn SMT formulas directly from program traces. The authors show

that this approach can learn more general nonlinear invariants (equalities, inequalities, and

disjunction).



13

Liveness verification (Termination, LTL, CTL). Termination and LTL properties are

two common liveness properties in software verification, today, numerous theories, tech-

niques, and tools exist for proving termination and non-termination [142, 78, 52, 53,

54, 60], as well as static tools for computation tree logic (CTL) properties. Tools in-

clude Terminator [52], Ultimate Automizer [159], HIPTNT+ [110], FUNCTION [72],

CPACHECKER [152], and APROVE [16]. There is a category on termination in the Soft-

ware Verification Competition (SV-COMP) [26], although in this repository there are some

simple property files that can be specified in LTL, a category for LTL verification task

is still missing, and not mature, ULTIMATE is state-of-art verifier that supports LTL ver-

ification but over mathematical integers. Along the way, some have shown methods for

conditional termination, whereby preconditions are found that specify the portion of traces

that terminate [45, 110]. Like invariant is essential to safety verification, ranking functions,

which demonstrate well-founded relations of the program, is critical to proving program

termination. An active line of research has focused on flavors of ranking functions, includ-

ing piece-wise [160], ordinals [162], size-change [112], and lexicographic [31]. Babić et

al. [18] focused on proving termination of a restricted class of nonlinear loops, called NAW

loops, which have special properties to allow their termination to be proved via analyzing

the divergence of variables influencing the loop conditions. All these techniques work well

in linear programs, yet when facing non-linear programs they are limited. On the one hand,

several static techniques are able to infer polynomial resource bounds [99, 98, 97]. Nguyen

et al. [125] describe runtime contracts for enforcing termination, using the size-change

strategy for termination. The TiML functional language [169] allows a user to specify time

complexity as types and then uses type checking to verify the specified complexity. The

WISE tool [36] uses concolic execution to search for a path policy that leads to an execution

path with high resource usage. On the other hand, a number of works have exploited dy-

namic information to infer termination reasoning. [135] showed that linear regression can



14

be used to infer bounds of program loops from systematic testing suites and these bounds

imply termination. They then attempt to validate those bounds and use counterexamples

to improve the precision of inference. There are some other approaches that attempt to

reason program termination and non-termination at the same time [87, 109, 110]. Le et

al. [107] proposed an algorithm that incorporates learning-based reasoning for recurrent

sets (for non-termination) and rank functions (for termination) into an integrated algorithm

that samples inputs and partitions them into terminating versus potentially non-terminating

traces. It then performs learning on these partitions separately and combines counterex-

amples from one partition to inform the other. The algorithm is implemented in their tool

DYNAMITE, which is capable of proving termination and non-termination of non-linear

programs. Kroening et al. [140] introduced a novel automated program termination analy-

sis by using neural networks to represent ranking functions, this method succeeds over the

programs that use disjunctions in their loop conditions and programs that include nonlinear

expressions. Going beyond, temporal verification is not discussed in these works.

There are also works [1, 22, 153, 46] focusing on temporal reasoning on distributed

system, and works on temporal specification mining [100, 124, 114], however, these tem-

poral properties are still limited, and program operations are subject to linear behaviors

mostly. Recently, works [138, 79, 82, 55] on data driving model checking bringing im-

provement in efficiency, discuss benefits of static, dynamic and hybrid analysis. Inspired

by these works, our dual rewriting for branching-time verification uses dynamic learning to

mitigate the burden of static analysis, shifting NLA reasoning to linear constraints, helping

solvers [158] find sound results for even more complicated cases. In general, there are

many techniques for static verification of temporal properties [53, 50, 25, 48, 156, 163].

However, to our knowledge, there are no verification techniques with support for CTL pro-

grams’ general non-linear expressions. Ultimate [159] has support for some non-linear

expressions for proving reachability, termination, or linear temporal logic (LTL). LTL is a



15

trace-based logic and so traces can be taken one path at a time and, for each case, over-

approximated. The dynamic invariant inference work such as [171, 132] can find NLA

invariants, but does not analyze CTL properties.

1.5 Contributions and Dissertation Organization

Our work focuses on temporal verification of nonlinear programs. We now list individual

items of the work presented in this dissertation, and highlight the individual contributions.

• We present a novel theory of source-level bitwise branching to verify bitvector pro-

grams by approximating operations with linear constraints. We implemented bitwise

branching within Ultimate Automizer, and our implementation has been merged into

the ULTIMATE [159] program analysis framework.

• We released new benchmark suites for reachability, termination, LTL verification of

bitvector programs, which have been submitted to SVComp [8].

• We present extensive experimental results showing that bitwise branching en-

ables reachability, termination, and LTL verification of bitvector programs, respec-

tively, they are competitive with state-of-the-art SMT solvers, termination tools

(e.g.AProVe, T2, FUNCTION), we also show that bitwise branching leads to an ef-

fective technique for verifying LTL of bitvector programs.

• With bitwise branching applied to the decompiled program, we develop a complete

toolchain called DARKSEA for decompiling (“lifting”) and verifying binaries. We

implement a series of translations that re-target lifted binaries to verification rather

than re-compilation, and we devise a new benchmark suite for LTL of binary exe-

cutables. Experimental results showing that DARKSEA is effective in verifying LTL

properties of binary executables, and it’s the first tool to do so.



16

• While LTL specifies program properties over a single computation trace (implicitly

describes all the computation paths), CTL describes properties over program paths

including branching conditions, requiring more reasoning power to handle differ-

ent branches at the same time. We present a novel dual rewriting algorithm for

branching-time verification of nonlinear arithmetic programs. This approach com-

bines both static and dynamic analysis to find the exact equivalent of nonlinear be-

havior with linear expressions (considering both positive and negative branches). We

implement the algorithm in our tool DRNLA, which is able to transform nonlinear

programs into linear programs with dynamic analysis, at the same time, providing

soundness proof from static analysis. We evaluate DRNLA with nonlinear bench-

marks from SVComp [8]. Experimental results show that DRNLA is effective in

CTL verification of nonlinear programs.

Parts of this dissertation have been presented and published in the FMCAD student

forum [115] (bitwise branching theory), APLAS [116] (proving LTL properties of btivector

programs and DARKSEA), and submitted to PLDI 2023 conference (CTL verification for

nonlinear programs with dynamic analysis).

Throughout this dissertation, we consider bitvector operations along with other non-

linear arithmetics as nonlinear behaviors in the program, we refer to them as nonlinear pro-

grams. The rest of the dissertation is organized in the following way: Chapter 2 introduces

foundations and preliminaries for the research work. In Chapter 3, we present our work on

proving linear temporal logic properties of bitvector programs, through a theory of bitwise

branching, that approximates bitvector programs with linear constraints. Bitwise branching

allows us to exploit the well-developed integer reasoning and interpolation of verification

tools, and enables more programs to be verified, in this chapter, we also present all the

experimental results regarding reachability, termination, and LTL verification of bitvector



17

programs.

In Chapter 4, we first present a practical case application of bitwise branching the-

ory: LTL verification of de-compiled programs. We then summarize challenges in binary

de-compilation and verification, and to tackle these challenges, we implement multiple

passes of LLVM byte code translation in our binary verification toolchain DARKSEA. In

the end, we evaluate DARKSEA with termination and LTL benchmarks that are compiled

into binaries.

In Chapter 5, we present a dynamic approach to prove branching-time properties

(CTL) of nonlinear programs. We show an approach that uses dynamic learning combined

with static analysis to tackle other type of non-linear programs that have a higher order of

polynomials. In high level, we introduce dual refinement for the linear approximation of

nonlinear expressions, when the algorithm terminates, it entails the exact mapping from

linear expressions to their polynomial counterpart. We execute the program and collect

concrete traces at locations of interest, infer program candidate invariants from concrete

traces, then use these linear invariants to approximate polynomial expressions. Then we

discuss static validation for dynamic inference, for the counterexample discovered from

static validation, we present an approach to dynamically generalize the counterexample,

and sent the results back to dual refinement. We implement the algorithm in our dual

analysis tool DRNLA, it enables verification tools to verify CTL properties of polynomial

programs, we then evaluate our tool DRNLA with a wide range of nonlinear benchmarks

and compare its results with the latest CTL verification tools. In the final Chapter 6, we

summarize our research work that has been done and lay out future directions of the work.



18

Chapter 2

Foundations

In this chapter, we introduce concepts, terms, and definitions of static program verification

and dynamic analysis used in this dissertation. We also list well-known verification and

dynamic analysis tools. For theoretical fundamentals, we introduce the formalization of

transition systems, program syntax/semantics, linear temporal logic (LTL), computation

tree logic (CTL), and Büchi automaton.

2.1 Program Semantics and Transition Systems

Static analysis algorithms traverse target programs and, various program representations of

those programs are proposed in the literature. In many static verification approaches, the

program is transformed into an intermediate representation that is independent of domain-

specific languages. In this section, we first set up various formal definitions for program

semantics, program modeling, and Boogie programs [24] which are well-known verifica-

tion languages for static analysis like reachability, termination, LTL, and CTL.

2.1.1 Boogie Program

The majority of our work is on C source programs, however, verification tools (introduced

in later Section 2.4) parse languages into internal representations, Boogie programs, a

widely used intermediate language for verification program. In our implementations, in-

put source programs (or binaries de-compiled to C) that may have nonlinear operations are

then translated into Boogie programs. Figure 2.1 shows the complete syntax for a boogie

program P from ULTIMATE [159] tool.

In our work, we are focused on techniques for encoding reasoning about nonlinear



19

Expr ::= Lit | Id
| Expr BinOp Expr | UnOp Expr | (Expr)
| (if Expr then Expr else Expr)
| old(Expr)
| Id ((Expr)∗)
| Expr [Expr(, Expr)∗(:= Expr)?]
| Expr [Lit : Lit]
| (QOp TypeArgs? VarList(, VarList)∗ :: TrigAttr ∗ Expr)

BinOp ::= + | - | * | / | %
| && | || | ==> | <==>
| == | != | < | <= | > | >=
| ++ | <:

UnOp ::= - | !
QOp ::= forall | exists
Lit ::= true | false

| 0 | 1 | 2 | . . .
| 0.0 | 0.01 . . . | 0.001 . . . | . . . | 1.0 | 1.01 . . . | . . .
| 0bv0 | 0bv1 | 1bv1 | 0bv2 | 1bv2 | 2bv2 | 3bv2 | . . .

TrigAttr ::= { Expr(, Expr)∗ } | Attr

Figure 2.1: Syntax of Boogie expressions in the ULTIMATE program analysis framework.

programs in the Integer domain. We thus introduce non-terminal UninterpFn as uninter-

preted functions for all bitwise unary and binary operations. Figure 2.2 shows our Boogie

semantics extension on top of the semantics from Figure 2.1, omitting the similar syntax

that showed in Figure 2.2.

e ::= Lit | Id | ... | UninterpFn
BinOp ::= + | - | * | / | % | && | || | == | != | < | <= | > | >= | ...
UnOp ::= | ~ | !

....
UninterpFn ::= bwAnd | bwOr | bwXor | bwShL | bwShR | bwCompl

Figure 2.2: Syntax of Boogie expressions with bitwise operators.

Figure 2.3 shows boogie statement syntax, as used in ULTIMATE.



20

Stmt ::= assume Expr; | assert Expr;
| call forall Id (NondetExpr); | Id : Stmt
| Lhs(, Lhs)∗ := Expr(, Expr)∗; | break Id;
| if (NondetExpr){ Stmt∗ } Else | goto Id(, Id)∗;
| while (NondetExpr) LoopInv∗ {Stmt∗ } | call CallLhs Id ();
| call CallLhs Id (Expr(, Expr)∗); | havoc Id(, Id)∗;
| call forall Id (Expr(, Expr)∗); | return;

Lhs ::= Id | Id[Expr(, Expr)∗]
NondetExpr ::= * | Expr

Else ::= else if (NondetExpr){ Stmt∗ }Else | else { Stmt∗ }
CallLhs ::= Id(, Id)∗ :=
LoopInv ::= free invariant Expr;

Figure 2.3: Boogie statement syntax.

2.1.2 Semantics

For program (denoted P ) semantics, we assume a state space Σ : Vars → Vals, mapping

variables (denoted V ) to values. We let [[e]] : Σ → Vals and [[s]] : Σ → P(Σ) be the

semantics of expressions and nondeterministic statements, respectively, and [[P ]] denotes

execution traces of P . A trace π of a program P is a sequence π = σ0, σ1, . . . such that

σ0 is an initial state, with a transition relation R of the program, and ∀i ≥ 0.R(σi, σi+1),

i.e. the transitions are in the operational semantics of P . The set of all traces of a program

P is denoted by [[P ]] and for a trace π = σ0, σ1, . . ., the j-th state σj in the trace is denoted

by π[j].

We will also work with Boolean conditions [[eb]] : Σ → B and expressions [[e]] :

Σ → Vals. To represent conditions, we use logical formulae for states, denoted C, where

[[C]] : Σ→ B.

A transition system can be presented as an automaton. Control-flow automata (CFA)

are one common such automata to model a program P as a transition system. Various

verification tools [159, 152] build on top of CFAs.



21

Definition 2.1.1 (Control-flow automaton). A (deterministic) control flow automaton

(CFA) [96] is a tupleA = 〈Q, q0, X, s,−→〉whereQ is a finite set of control locations and q0

is the initial control location, X is a finite sets of typed variables, s is the loop/branch-free

statement language and −→⊆ Q× s×Q is a finite set of labeled edges.

2.1.3 Logical Transition Relation

We use the notation V ′ to denote a second set of primed versions of the same variables

V , i.e. V ′ = {v′|v ∈ V }, We also work with logical state transition relations denoted T ,

where [[T ]] ⊆ Σ× Σ.

2.2 Temporal Logic and Büchi Automaton

Computation tree logic (CTL) and linear temporal logic (LTL) are widely studied logics

in temporal verification. Here we lay out definitions and notations for CTL and LTL used

throughout our work.

2.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is a modal logic that reasons over linear program traces

through time, starting in the current time and progressing into the future infinitely. LTL

is per trace so, at each time instance, there is only one future timeline that can occur. We

denote Prop as a set of atomic propositions. LTL formulae are then composed of a finite

set Prop, the Boolean operators ¬,∧,∨, =⇒ and the temporal operators U (“until”), R

(“release”), X (“next time”), G (“globally”) and F (“in the future”). Intuitively, formula

ϕUψ states that either ψ is true now or ϕ is true now and ϕ remains true until such a time

when ψ holds. For the case ϕRψ, it means ϕ releases ψ, states that ψ must be true now and

remains true until such a time when ϕ is true, thus releasing ψ. Xϕ means that ϕ is true in



22

the next time step after the current one. Lastly, Gϕ means that ϕ is always true in any time

step while Fϕ designates that ϕ must either be true now or at some future time step. We

now define LTL formulae inductively:

Definition 2.2.1 (LTL formulae). For every p ∈ Prop, p is a formula, LTL formula ϕ is

defined as following:

ϕ ::= p ∈ AP | ¬ϕ | Gϕ | Fϕ | ϕ =⇒ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ

Definition 2.2.2 (LTL formulae interpretation of program computation). ω denotes the set

of non-negative integers, we have a computations form π : ω → 2Prop, we use ⇐⇒ to

denote “if only if". For computation π at the time instant i ∈ ω satisfies LTL formula ω, we

define π, i |= ϕ as following:

π, i |= p for p ∈ Prop ⇐⇒ p ∈ π(i).

π, i |= ¬ϕ ⇐⇒ π, i 2 ϕ.

π, i |= Gϕ ⇐⇒ ∀j ≥ i, π, j |= ϕ.

π, i |= Fϕ ⇐⇒ ∃j ≥ i, such that π, j |= ϕ.

π, i |= Xϕ ⇐⇒ π, i+ 1 |= ϕ.

π, i |= ϕ ∧ ψ ⇐⇒ π, i |= ϕ and π, i |= ψ.

π, i |= ϕ ∨ ψ ⇐⇒ π, i |= ϕ or π, i |= ψ.

π, i |= ϕUψ ⇐⇒ ∃j ≥ i such that π, j |= ψ and ∀k, i ≤ k < j, π, k |= ϕ.

π, i |= ϕRψ ⇐⇒ ∀j ≥ i, ⇐⇒ π, j 2 ψ, then ∃k, i ≤ k < j such that π, k |= ϕ.

π, i |= ϕ =⇒ ψ ⇐⇒ π, i |= ¬ϕ ∨ ψ.



23

2.2.2 Computation Tree Logic

There are two classes of temporal constructors in CTL formula: the AF and AW construc-

tors quantify universally over paths and the EF and EW constructors quantify existential

over paths. We use F and W as our base temporal operators and assume that formulae are

written in negation normal form, in which negation only occurs next to atomic propositions.

A formula that is not in negation normal form can be easily normalized. A CTL formula

therefore is defined as:

ϕ ::= p ∈ AP | ϕ ∨ ϕ | ϕ ∧ ϕ | AFϕ | EFϕ | A[ϕWϕ] | E[ϕWϕ]

Note that AGp can be defined as A[p W false], and EGp can be defined as

E[p W false]. The semantics of each type of formula is shown below, where [[p]] denotes

the set of states where p holds:

M,σ � p ⇐⇒ σ ∈ [[p]]

M,σ � ϕ1 ∧ ϕ2 ⇐⇒ M,σ � ϕ1 ∧M,σ � ϕ2

M,σ � ϕ1 ∨ ϕ2 ⇐⇒ M,σ � ϕ1 ∨M,σ � ϕ2

M,σ � AFϕ ⇐⇒ ∀(σ0, σ1, ...) ∈ Π(Σ, R, {σ}). ∃i ≥ 0. M, σi � ϕ

M, σ � EFϕ ⇐⇒ ∃(σ0, σ1, ...) ∈ Π(Σ, R, {σ}). ∃i ≥ 0. M, σi � ϕ

M, σ � A[ϕ1Wϕ2] ⇐⇒ ∀(σ0, σ1, ...) ∈ Π(Σ, R, {σ}). (∀i ≥ 0. M, σi � ϕ1)∨

(∃j ≥ 0. M, σj � ϕ2 ∧ ∀i ∈ [0, j). M, σi � ϕ1)

M,σ � E[ϕ1Wϕ2] ⇐⇒ ∃(σ0, σ1, ...) ∈ Π(Σ, R, {σ}). (∀i ≥ 0.M, σi � ϕ1)∨

(∃j ≥ 0. M, σj � ϕ2 ∧ ∀i ∈ [0, j). M, σi � ϕ1)



24

2.2.3 ω Language and Büchi Automaton

LTL can express a strict subset of ω-regular expressions. In practical verification, linear

time logic and operators make the expression of specific properties easier and more flexible

to extend the specification language to full ω-regularity.

Definition 2.2.3 (ω-regular expression). An ω-regular expression is an expression in the

form ∪iαi(βi)
ω, where i is non-zero and finite integers, α and β are regular expressions

over the alphabet Σ.

We can define ω-regular language with ω-regular language as following.

Definition 2.2.4 (ω-regular language). An ω-regular language is the language that can

be described by ω-regular expressions, and a language is ω-regular if and only if there is

a Büchi automaton accepts it. The family of ω-regular language is closed under union,

intersection, and complementation.

The automata-theoretic approach is an effective way to accomplish the LTL verifi-

cation task [164, 165]. Static analysis tools (ULTIMATE, CPACHECKER, etc.) are based

on this approach, which translates LTL formulae into Büchi Automata [166]. This step is

performed automatically by model checkers. An infinite word w is accepted by the Büchi

automaton if the run over w visits at least one state in F infinitely often.

Definition 2.2.5 (Büchi Automaton). A Büchi Automaton is a quintuple (Q,Σ, δ, q0,F)

where:

• Q is a finite set of states.

• Σ is a finite alphabet.

• δ : Q× Σ×Q is a transition relation.



25

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of final states.

2.3 LTL Verification

To verify temporal properties that involve eventualities such as AFϕ or Fϕ, we need to

reason about the loop body for its termination and non-termination, which requires ranking

functions and recurrent sets. Additionally, building Büchi product automata is an effective

fundamental approach for automata-theoretic LTL analysis, we define these fundamental

ideas in this section.

Definition 2.3.1 (Ranking function). For a state space S, a ranking function f is a total

map from S to a well-ordered set with ordering relation ≺. A relation T ⊆ S × S is well-

founded if and only if there exists a ranking function f such that ∀(s, s′) ∈ T .f(s′) ≺ f(s).

Definition 2.3.2 (Recurrent set). For sets of states X and transition relation T , X is a

recurrent set if

1. S 6= ∅,

2. T is total on X ,

3. the image of T on X is contained within X

Definition 2.3.3 (Büchi program product). Let P = (Loc, l0, δP) be a program (written

in Boogie programming language) over the set of statements Stmt, AP a set of atomic

propositions over the program’s variables V ar, and let A = (Σ,Q, q0,→,F) be a Büchi

automaton whose alphabet is Σ = 2AP . The Büchi program product P ⊗ A is a Büchi

program B = (StmtB, LocB, l0B , δB, LocFB) such that the set of statements consists of

all sequential compositions of two statements where the first element is a statement of P



26

and the second element is a statement that assumes that a subset of atomic propositions is

satisfied, where:

• StmtB = {s; assume a|s ∈ Stmt, a ∈ 2AP}.

• LocB = {(l, q)|l ∈ Loc and q ∈ Q}.

• l0B = (l0, q0).

• δB = {((l, q), s; assume a, (l′, q′))|(l, s, l′) ∈ δP and (q, a, q′) ∈→} (l′, q′ are next

location/state obtained from the transition relation).

• LocFB = {(l, q)|l ∈ Loc and q ∈ F}.

2.4 Principal Verification Tools and Dynamic Verification

In Chapter 1, we introduced various verification tools based on static analysis and dynamic

analysis. In this section, we summarize more details about tools that are competitive among

their peer tools and have been used in our experiments.

2.4.1 Static Temporal Verification

Among static verification tools, ULTIMATE [90] stands out for its grand support for anal-

ysis techniques (e.g., interpolation, abstract interpretation, predicate abstraction, bounded

model checking, etc.) and unified components that are flexible for users to extend its func-

tionalities. ULTIMATE is a program analysis framework, that uses an automata-theoretic

approach to verify safety, termination, and LTL properties of the program (C/C + +, Boo-

gie, etc.), and it provides rich automaton operation libraries. The ULTIMATE framework

consists of various plugins that are capable of complex verification tasks. The front end

plugin can parse source programs into boogie programs as internal high level representa-

tion, then it transforms program expressions to SMT and builds up intermediate control



27

flow graphs. From the control flow graph, various automatons (Büchi automaton 2.3.3,

nested word automaton) can be constructed for verification analysis.

FUNCTION [72] and T2 [32] are established tools for termination verification

and temporal verification (CTL). FUNCTION infers piecewise-defined ranking functions

through abstract interpretation, combining various abstract domains to balance the preci-

sion and the cost of analysis. The analyzer is implemented in Ocaml on top of the APRON 1

library. T2 is the publicly released tool from the Terminator project [52]. Over the past

decade, it has been extended to support temporal-logic proving techniques, and it allows

users to provide a broader class of liveness and safety properties. Internally T2 works on

an intermediate representation, also called .t2, that can be extracted from LLVM frame-

work, allowing support for a wide range of programming languages (e.g. C, C++, Objective

C, etc.). T2 can reduce temporal specifications to safety, termination and nontermination

analysis techniques, more details of its architecture are introduced in [33].

2.4.2 Dynamic Verification

In chapter 5 we introduce a temporal analysis technique that employs dynamic analysis, and

we use dynamic tool DIG [130]. DIG can generate possible (“cadidate”) program invariants

at arbitrary program locations. Users can specify program locations and use DIG to run

on source code. DIG performs symbolic execution on the input program and generates

concrete state (concrete values of global and local variables) from program locations. It

then infers numerical invariants among arbitrary variables. Its numeric relations include

non-linear/linear equalities, linear inequalities, minimum/maximum equalities/inequalities,

congruent relations, and array invariants. Users can also provide concrete trace data of the

program to DIG for invariant inference. The project is open source and core algorithms are

implemented in Python. We now formally introduce nonlinear programs that our work

1http://apron.cri.ensmp.fr/library/



28

operates on and define their related terms.

Syntax. We work with a simple model of programs that supports nonlinear arith-

metic expressions (branch/loop conditions and assignments), the statement is presented in

Boogie syntax but with a focus on branching statements, and its full syntax and semantics

are shown in Section 2.1:

P ::= stmt

stmt ::= stmt ; stmt | if b` then stmt else stmt | v := e | skip

| while(true) if(¬b`) then break else stmt

e ::= c | v | e⊗ e | . . .

b ::= true | false | ¬b | b and b | b or b | e / e

where /::=<|≤|=| . . . are comparisons between integer expressions, ⊗ are typical inte-

ger operations, and c refers to integer constants. We represent while loops with if and

break, so that we can apply our algorithms to if statements only, yet still capture branch-

ing in loop headers. We label branch condition expressions b` and assume that each ` is

chosen to uniquely identify the expressions (i.e. a program location). We also assume that

the program location is stored in a variable pc for the program counter whose value is `

when evaluating expression b`.

Snapshots. As is common in dynamic analysis, instrumentation is used so that when the

program is executed, states can be recorded. We introduce a family of “snapshot” keywords

snap` to represent statements added to the program at location ` that read and log the

current state, along with the location ` where the snapshot is taken before the ` statement is

executed. Apart from the side-effect of saving the state, the semantics of snap is otherwise

skip.



29

Approximating sampled states. For a set of states S, we define an over-approximation

of a sampling, denoted αS , to be an abstraction that is guaranteed to be an abstraction only

of the states in S. If S = Σ, then αS is sound for the program. We assume a facility for

learning abstractions αS of a sample of states S. Such techniques are available from recent

tools such as DIG [129], Diakon [67], etc. and provide the following function:

Definition 2.4.1. [Learning sample approximations] For a set of states S ⊆ Σ, we assume

the availability of a function learn : S → C̄ such that ∀σ ∈ S, c ∈ C̄ we have that [[c]]σ is

true.

Static verification (notes). We assume a special location denoted err and the static

verification problem is to determine whether err is reachable in a given program. If not,

static validation returns a counterexample path cex . We assume that this counterexample

includes the error location that was possibly reachable.



30

Chapter 3

Temporal Verification of Bitvector Programs

There is increasing interest in applying verification tools to programs that have bitvector

operations. SMT solvers, which serve as a foundation for these tools, have thus increased

support for bitvector reasoning through bit-blasting and linear arithmetic approximations.

One common strategy employed by these SMT solvers is bit-blasting, which translates the

input bitvector formula to an equi-satisfiable propositional formula and utilizes Boolean

Satisfiability (SAT) solvers to discharge it. Another strategy is to approximate bitvector

operations with integer linear arithmetic [30]. CVC4 now employs a new approach called

int-blasting [174], which reasons about bitvector formulas via integer nonlinear arithmetic.

Inspired by these SMT strategies, in this chapter we show that similar linear arith-

metic approximation of bitvector operations can be done at the source level through trans-

formations. Specifically, we present bitwise branching that introduces new paths to over-

approximate bitvector operations with linear conditions/constraints, increasing branching

but allowing us to better exploit the well-developed integer reasoning and interpolation of

verification tools. Bitwise branching(BWB) can be combined with various tools, making it

an appealing general strategy. We implement bitwise branching as a source translation, in

the ULTIMATE verifier. We at first chose to implement bitwise branching within ULTIMATE

source code (during the C-to-Boogie [24] translation) so that we could compare against un-

modified ULTIMATE, which is already one of the more effective Termination/LTL verifiers.

Furthermore, to our knowledge other tools don’t allow one to flip a switch to enable their

own bit-precise analysis (i.e., CBMC’s Bitblasting or CPACHECKER’s FixedSizeBitVec-

tors theory) or disable that analysis, abstracting with integers. We needed such a switch

to evaluate bitwise branching. Other tools that employ non-bitprecise techniques simply



31

report "Unknown" as soon as they encounter bit operations.

We evaluate BWB on improving verifiers of reachability, terminatio, and LTL. SV-

COMP (software verification competition) has a collection of benchmarks for various veri-

fication tasks, however, most SV-COMP benchmarks require little or no bitvector reasoning

and the majority of benchmarks have no bitvector operations in them whatsoever. Others

have bitvector operations, but those operations are not relevant to the property and exist-

ing tools abstract them away. Since the SV-COMP benchmarks do not include examples

targeted to bitvector termination or bitvector LTL, we created new benchmarks by extend-

ing examples from the SV-COMP termination category [9]. In our experiment, we show

that, for reachability of bitvector programs, increased branching incurs negligible overhead

yet, when combined with integer interpolation optimizations, enables more programs to

be verified. We further show this exploitation of integer interpolation in the common case

also enables competitive termination verification of bitvector programs and leads to the

first effective technique for LTL verification of bitvector programs. We implement bitwise

branching as a source translation, in the ULTIMATE verifier.

3.1 Motivating Examples

(1) Reachability (2) Termination (3) LTL ϕ = G(F(n < 0))

int r, s, x;

while (x>0){

s = x >> 31;

x--;

r = x + (s&(1-s));

if (r<0) error();

}

a = *; assume(a>0);

while (x>0){

a--;

x = x & a;

}

while(1) {

n = *; x = *; y = x-1;

while (x>0 && n>0) {

n++;

y = x | n;

x = x - y;

}

n = -1;

}

and_reach1.c and-01.c or_loop3.c



32

We refer to the above bitvector programs throughout the chapter. To prove error un-

reachable in the Example (1), a verifier must be able to reason about the bitvector >> and

& operations. Specifically, it must be able to conclude that expression s&(1-s) is always

positive (so r cannot be negative) which also depends on the earlier x>>31 expression.

We will use this example to explain our work in Sec. 3.2, and compare the performance

of ULTIMATE using state-of-the-art SMT solvers, with and without bitwise branching. In

Sec. 3.3, we describe our implementation inside ULTIMATE (with MATHSAT) and show

that our technique allows us to prove this example in 0.387s as opposed to 0.740s. Similar

speedups are found when using CVC4 or Z3.

The key benefits of bitwise branching arise when concerned with termination and

LTL. Example (2) involves a simple loop, in which a is decremented, but the loop con-

dition is on variable x, whose value is a bitvector expression over a. Today’s tools for

Termination of bitvector programs struggle with this example: APROVE, CPACHECKER

and ULTIMATE report unknown and KITTEL and 2LS timeout after 900s . Critical to

verifying termination of this program are (1) proving the invariant I : x > 0 ∧ a > 0

on Line 3 within the body of the loop and (2) synthesizing a rank function. To prove

the invariant, tools must show that it holds after a step of the loop’s transition relation

T = x>0 ∧ a′=a−1 ∧ x′=x&a′, which requires reasoning about the bitwise-& operation

because if we simply treat the & as an uninterpreted function, I ∧ T ∧ x′>0 6=⇒ I ′.

1 a = *; assume(a > 0);
2 while (x > 0) {
3 { x > 0 ∧ a > 0 }
4 a--;
5 if (x >= 0 && a >= 0)
6 then { x = *; assume(x <= a); }
7 else {x = x & a;}
8 }

Figure 3.1: Transformed Version for Example 2.



33

The bitwise branching strategy we describe in this chapter helps the verifier infer

these invariants (and later synthesize rank functions) by transforming the bitvector assign-

ment to x into linear constraint x<=a, but only under the condition that x>=0 and a>=0.

That is, bitwise branching translates the loop in Example (2) to the version as depicted in

the gray box of Figure 3.1. This transformation changes the transition relation of the loop

body from T (the original program) to T ′:

T ′ = x>0 ∧ a′=a−1 ∧ ((x≥0 ∧ a′≥0 ∧ x′≤a′) ∨ (¬(x≥0 ∧ a′≥0) ∧ x′=x&a′))

Importantly, when I holds, the else branch with the bitwise & is infeasible, and thus we can

treat the bitwise & as an uninterpreted function and yet still prove that I∧T ′∧x′>0 =⇒ I ′.

With the proof of I a tool can then move to the next step and synthesizing a ranking function

R(x, a) that satisfies I ∧ T ′ =⇒ R(x, a)≥0 ∧R(x, a)>R(x′, a′), namely,R(x, a) = a.

Bitwise branching also enables LTL verification of bitvector programs. We examine

the behavior of programs such as Example (3) above, with LTL property G(F(n < 0)). The

state-of-the-art program verifier for LTL is ULTIMATE, but ULTIMATE cannot verify this

program due to the bitvector operations. (ULTIMATE’s internal overapproximation is too

imprecise so it returns Unknown.) In Sec. 3.4 we show that with bitwise branching, our

implementation can prove this property of this program in 8.04s.

3.2 Bitwise-branching

We now describe our main technique. We build our bitwise-branching technique on the

known strategy of transforming bitvector operations into integer approximations [30, 174]

but explore a new direction: source-level transformations to introduce new conditional

paths that approximate many (but not all) behaviors of a bitvector program. These new

paths through the program have linear input conditions and linear output constraints and



34

frequently cover all of the program’s behavior (with respect to the goal property), but oth-

erwise fall back on the original bitvector behavior when none of the input conditions hold.

We provide two sets of bitwise-branching rules:

e1 = 0 `E e1&e2  0 [R-AND-0]
(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 `E e1&e2  e1 [R-AND-1]

(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) `E e1&e2  e1&&e2 [R-AND-LOG]
(e1 = 0 ∨ e1 = 1) ∧ (e2 = 0 ∨ e2 = 1) `E (e1|e2)==0  e1==0&&e2==0 [R-OR-LOG]

e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2 [R-AND-LBS]
e2 = 0 `E e1|e2  e1 [R-OR-0]

(e1 = 0 ∨ e1 = 1) ∧ e2 = 1 `E e1|e2  1 [R-OR-1]
e2 = 0 `E e1ˆe2  e1 [R-XOR-0]

e1 = e2 = 0 ∨ e1 = e2 = 1 `E e1ˆe2  0 [R-XOR-EQ]
(e1 = 1 ∧ e2 = 0) ∨ (e1 = 0 ∧ e2 = 1) `E e1ˆe2  1 [R-XOR-NEQ]

e1 ≥ 0 ∧ e2 = CHAR_BIT * sizeof(e1)− 1 `E e1»e2  0 [R-RSHIFT-POS]
e1 < 0 ∧ e2 = CHAR_BIT * sizeof(e1)− 1 `E e1»e2  −1 [R-RSHIFT-NEG]

Figure 3.2: Rewriting rules for arithmetic expressions.

1. Rewriting rules of the form C `E ebv  eint in Fig. 3.2. These rules are applied

to bitwise arithmetic expressions ebv and specify a condition C for which one can use inte-

ger approximate behavior eint of ebv. In other words, rewriting rule C `E ebv  eint can

be applied only when C holds and a bitwise arithmetic expression e in the program struc-

turally matches its ebv with a substitution δ. Then, e will be transformed into a conditional

approximation: Cδ ? eintδ : ebv. Note that, although modulo-2 is computationally more

expensive, it is often more amenable to integer reasoning strategies. Note that there is a

rewriting rule we use modulo constant 2, which in general is more expensive than bitwise

operation, while our goal is to transform common bitwise operations to integer arithmetic,

which opens more efficient verification tasks in integer domain. For conciseness, we omit-

ted condition variants that arise from commutative re-ordering of the rules (in both Figs. 3.2

and 3.3).

For example, consider the bitvector arithmetic expression s&(1-s) in Example (1)

of Sec. 3.1. If we apply the rewriting rule e1 ≥ 0 ∧ e2 = 1 `E e1&e2  e1%2 with

the substitution s/e1, 1-s/e2 then the expression is transformed into s>=0 && (1-s)==1



35

? s%2 : (s&(1-s)). Since s reflects the sign bit of the positive variable x, it is always

0, and the if condition is feasible. In general, all the rules can be applied one at a time,

and we can further replace the remaining bitwise operation in the else expression with

other applicable rules. There may still be executions that fall into the final catch-all case

where the bitwise operation is performed. However, as we see later, these case splits are

nonetheless practically significant because often the final else is infeasible.

e1 ≥ 0 ∧ e2 ≥ 0 `S r ople e1&e2  r<=e1 && r<=e2 [W-AND-POS]
e1 < 0 ∧ e2 < 0 `S r ople e1&e2  r<=e1 && r<=e2 && r<0 [W-AND-NEG]
e1 ≥ 0 ∧ e2 < 0 `S r opeq e1&e2  0<=r && r<=e1 [W-AND-MIX]

e1 ≥ 0 ∧ is_const(e2) `S r opge e1|e2  r>=e2 [W-OR-CONST]
e1 ≥ 0 ∧ e2 ≥ 0 `S r opge e1|e2  r>=e1 && r>=e2 [W-OR-POS]
e1 < 0 ∧ e2 < 0 `S r opeq e1|e2  r>=e1 && r>=e2 && r<0 [W-OR-NEG]
e1 ≥ 0 ∧ e2 < 0 `S r opeq e1|e2  e2<=r && r<0 [W-OR-MIX]
e1 ≥ 0 ∧ e2 ≥ 0 `S r opge e1ˆe2  r>=0 [W-XOR-POS]
e1 < 0 ∧ e2 < 0 `S r opge e1ˆe2  r>=0 [W-XOR-NEG]
e1 ≥ 0 ∧ e2 < 0 `S r ople e1ˆe2  r<0 [W-XOR-MIX]

e1 ≥ 0 `S r opeq ∼e1  r<0 [W-CPL-POS]
e1 < 0 `S r opeq ∼e1  r>=0 [W-CPL-NEG]

Figure 3.3: Weakening rules for relational expressions and assignments. ople ∈
{<,<=,==,:=}, opge ∈ {>,>=,==,:=}, and opeq ∈ {==,:=}

2. Weakening rules of the form C `S sbv  sint are in Fig. 3.3. These rules are

applied to relational condition expressions (e.g. from assumptions) and assignment state-

ments sbv, specifying an integer condition C and over-approximation transition constraint

sint. When the rule is applied to a statement (as opposed to a conditional), replacement sint

can be implemented as assume(sint) statement followed by a havoc() statement. When

a weakening rule C `S sbv  sint is applied to an assignment s with substitution δ, the

transformed statement is if Cδ assume(sintδ) else sbv. In addition, when sbv of a

weakening rule can be matched to the condition c in an assume(c) of the original pro-

gram via a substitution δ, then the assume(c) statement is transformed to:

if Cδ then assume(sintδ) else assume(c).

This rule can be applied to Example (2) of Sec. 3.1. In the view of CFA, consider



36

the set of statements of a given program as an alphabet set in CFA, Fig. 3.4 shows this rule

application for x = x&a in automaton level, the top is the original automaton, the bottom

is the transformed automaton after bitwise branching rule applied.

q0 q1
x := x&a

q0

qa qb

q1

¬(x ≥ 0 ∧ a ≥ 0) x ≥ 0 ∧ a ≥ 0

x := x&a assume(x ≤ a)

Figure 3.4: Weakening rules application in CFA (simplified for demonstration).

For all the branching rules, we introduce the following lemma that assists our trans-

formation soundness proof.

Lemma 3.2.1 (Rule correctness). For every rule C `E e  e′, ∀σ. C(σ) ⇒ [[e]]σ = [[e′]]σ.

For every C `S s s′, ∀σ. C(σ)⇒ [[s]]σ ⊆ [[s′]]σ.

We encode each rule’s correctness with SMT solver script (we use Z3 with 32-bit

size), proof details are in Appendix A.1. The choice of rules in Fig. 3.2 and Fig. 3.3

was developed empirically, from the reachability/termination/LTL benchmarks in the next

sections and, especially, based on patterns found in decompiled binaries (Sec. 4.2). We

then generalized these rules to expand coverage. As mentioned before, bitwise branching

rules can help abstract away bitwise operations and transform bitvector program into an

over-approximated program, which can be reasoned in integer arithmetic. Particularly, for

verification tasks of termination and temporal properties, instead of synthesizing ranking

function over bitvector directly, our branching rules which are motivated by our empiri-

cal study and generalized to have broad coverage, can help verification tools prove these

properties more effectively in the integer domain.



37

Translation algorithm. Our translation acts on the AST of the program, with one

method TE : exp -> exp to translate expressions and another method TS : stmt ->

stmt to translate assignment statements, each according to the set of available rules, detail

algorithms of TE and TS are shown in Figure 3.5.

type rule_exp = (exp -> exp -> exp) * (
exp -> exp -> exp)

let rec TE (e:exp) : exp =
match e with
| BinOp(⊗,e1,e2) ->

let e1’ = TE e1 in
let e2’ = TE e2 in
let rules = Rules.find_exp(⊗) in
fold_left (fun acc (cond,repl) ->

ITE(cond e1’ e2’,repl e1’ e2’,acc)
) (BinOp(⊗,e1, e2)) rules

| _ -> e

type rule_stmt = (exp -> exp -> exp) * (lhs
-> exp -> exp -> stmt)

let Ts (s:stmt) : stmt =
match s with
| Assign(lhs,BinOp(⊗,e1,e2)) ->
let e1’ = TE e1 in
let e2’ = TE e2 in
let rules = Rules.find_stmt(⊗)in
fold_left (fun acc (cond,repl) ->
IfElseStmt(cond e1’ e2’,repl lhs e1’ e2

’, acc)
) (Assign(l, BinOp(⊗, e1, e2) rules
| _ -> s

Figure 3.5: Bitwise branching algorithm.

In brief, when we reach a node with a bitwise operator, we recursively translate the

operands, match the current operator against our collection of rules, and apply all matching

rules to construct nested if-then-else expressions/statements. We found that, when multiple

rules matched, the order did not matter much.

Let TE{e} : e denote the result of applying substitutions to e, and similar for TS{s} :

s. We lift this to a translation on a Boogie program P with TE{P} : P and TS{P} :

P , referring to all expressions and statements in P , respectively. It is straightforward to

show that these rules are correct and that the translation is sound. Our rules are given in

Figures 3.2 and 3.3, and each can be thought of as a substitution δ on both the condition C

and expression e, obtaining e′. Let DE : e→ δ list be a transformation decision algorithm

defining, for an expression of e, which rules (i.e. a list of substitutions) to apply. Similarly,

let DS : s → δ list decide for a statement s which substitutions to apply. Further, let

TE{e} : e denote the result of applying substitutions to e as decided by DE , and similar

for TS{s} : s. Finally, we lift this to translations on programs P with TE{P} : P and



38

TS{P} : P , referring to all expressions and statements in P , respectively. We define

translations for expressions TE and for assignment statements TS , over a Boogie program

P , with semantics [[P ]]. We then show the following:

Theorem 3.2.2 (Soundness). For every P, TE, TS , [[P ]] ⊆ [[TS{TE{P}}]].

Proof. Induction on traces, showing equality on expression translation TE via induction

on expressions/statements and then inclusion on statement translations TS . First show that

TE preserves trace equivalence. Structural induction on e, with base cases being constants,

variables, etc. In the inductive case, for a bitvector operation e1⊗e2, assume e1, e2 has been

(potentially) transformed to e′1, e
′
2 (resp.) and that Lemma 3.2.1 holds for each i ∈ {1, 2}:

∀σ.[[ei]]σ = [[e′i]]σ. Since ⊗ is deterministic, [[e′1 ⊗ e′2]]σ = [[e1 ⊗ e2]]σ. Finally, applying

the transformation to ⊗, we show that [[TE{e′1 ⊗ e′2}]] = [[e′1 ⊗ e′2]] again by Lemma 3.2.1.

Next, for each statement s or relational condition c step, we prove TS preserves trace inclu-

sion: that [[s]] ⊆ [[TS{s}]] or that [[c]] ⊆ [[TS{c}]]. We do not recursively weaken conditional

boolean expressions, which would require alternating strengthening/weakening. Thus, in-

clusion holds directly from Lemma 3.2.1.

3.3 Reachability of Bitvector Programs

We now evaluate the effectiveness of bitwise branching (BwB) toward reachability verifi-

cation. We developed a new suite of 28 bitvector programs, including those adapted from

existing code snippets like the “BitHacks” programs, which uses bitwise operations for

various tasks. We implemented bitwise branching via a translation algorithm, in a fork of

ULTIMATE (now merged to the main branch). We denote our version as ULTIMATEBWB,

and it is publicly available 1.

We ran our experiments with BENCHEXEC [28] on a machine with an AMD Ryzen

1https://github.com/cyruliu/darksea

https://github.com/cyruliu/darksea


39

Table 3.1: Performance of ULTIMATE on bitvector programs, e.g. drawn from Sean Ander-
sen’s “Bit Hacks” repository, using various SMT solvers, with and without bitwise branch-
ing (BWB).

Integer Bitvector

BWB
CVC4

BWB
MS Itp

BWB
MS

BWB
SItp+Z3 SItp+Z3 BWB

Z3
CVC4 MS Itp MS Z3

Simple
logic_cmpl.c 4 6.10s 4 5.28s 4 5.43s 4 5.68s ? 4.90s 4 5.91s 4 5.90s 4 5.65s 4 6.86s 4 5.67s
logic_cmpl_f.c 7 6.97s 7 6.64s 7 6.74s 7 5.09s ? 6.69s 7 6.76s 7 5.05s 7 4.74s 7 4.92s 7 4.96s
and_loop.c 4 7.27s 4 5.39s 4 6.14s 4 5.42s 4 5.42s 4 5.19s 4 5.60s 4 6.49s 4 5.21s 4 5.46s
and_loop_f.c 7 6.72s 7 6.57s 7 5.52s 7 5.47s 7 6.90s 7 7.55s 7 5.44s 7 6.55s 7 6.92s 7 6.99s
logic_or.c 4 6.11s 4 5.35s 4 7.93s 4 7.19s ? 5.36s 4 6.11s 4 7.02s 4 6.02s 4 7.49s 4 6.89s
logic_or_f.c 7 5.35s 7 4.91s 7 5.52s 7 4.58s ? 4.85s 7 4.93s 7 5.47s 7 5.68s 7 4.66s 7 5.22s
logic_and.c 4 10.91s 4 7.27s 4 11.66s 4 7.30s ? 5.64s 4 8.83s 4 5.89s 4 6.88s 4 7.04s 4 6.80s
logic_and_f.c 7 4.94s 7 4.93s 7 5.01s 7 6.42s ? 6.36s 7 4.58s 7 4.98s 7 5.04s 7 4.95s 7 4.88s
logic_xor.c 4 5.99s 4 5.54s 4 5.94s 4 5.06s ? 6.64s 4 5.69s 4 5.77s 4 5.23s 4 5.30s 4 5.25s
logic_xor_f.c 7 4.90s 7 4.93s 7 5.19s 7 4.64s ? 5.16s 7 5.16s 7 5.29s 7 5.02s 7 6.26s 7 4.87s
and_reach1.c 4 8.17s 4 5.08s 4 7.59s 4 5.80s ? 5.08s 4 10.77s 4 7.10s 4 5.06s 4 5.94s 4 5.61s
and_reach2.c 4 6.53s 4 5.21s 4 6.40s 4 5.28s ? 6.50s 4 8.14s 4 5.94s 4 5.31s 4 6.10s 4 7.51s

BitHacks
parity_f.c 7 6.24s 7 5.72s 7 5.64s 7 5.67s ? 5.33s 7 6.14s 7 5.66s 7 5.32s 7 5.95s 7 5.73s
cnt-bits-set.c 4 8.16s 4 7.59s 4 8.34s 4 7.84s ? 7.18s 4 8.62s 4 7.26s 4 7.50s 4 7.62s 4 8.01s
cnt-bits-set_f.c 7 5.99s 7 5.26s 7 5.88s 7 5.98s ? 5.90s 7 5.93s 7 6.56s 7 5.78s 7 5.67s 7 5.75s
display-bit.c 4 5.92s 4 7.46s 4 5.68s 4 7.28s ? 6.11s 4 6.11s 4 7.25s 4 5.46s 4 6.29s 4 5.81s
display-bit_f.c 7 34.16s 7 51.33s 7 28.61s 7 35.44s ? 7.60s 7 26.64s 7 29.78s 7 44.89s 7 27.13s 7 32.37s
display-bit1.c 4 7.08s 4 5.83s 4 30.98s 4 5.81s ? 5.43s 4 6.47s 4 7.69s 4 5.42s 4 22.28s 4 5.65s
display-bit1_f.c 7 25.34s 7 43.19s 7 24.94s 7 24.63s ? 6.43s 7 19.91s 7 25.27s 7 35.84s 7 20.87s 7 24.73s
reverse-bits1.c 4 7.69s 4 6.36s 4 7.11s 4 6.35s ? 5.01s 4 7.34s 4 6.36s 4 5.77s 4 6.21s 4 6.36s
reverse-bits1_f.c 7 7.67s 7 7.05s 7 7.12s 7 7.22s ? 6.67s 7 7.46s 7 6.80s 7 6.57s 7 6.87s 7 6.81s
cz-bits-trailing.c 4 6.32s 4 5.16s 4 5.89s 4 6.08s ? 6.12s 4 5.83s 4 5.73s 4 6.10s 4 5.78s 4 6.24s
cz-bits-trailing_f.c 7 7.11s 7 6.72s 7 6.68s 7 7.22s ? 6.54s 7 6.77s 7 6.93s 7 7.12s 7 6.42s 7 6.79s
cnt-bits-BK1.c 4 8.99s 4 5.48s 4 38.14s 4 5.44s ? 5.40s 4 34.03s 4 6.27s T 300.81s 4 5.01s 4 5.80s
cnt-bits-BK1_f.c 7 5.30s 7 4.96s 7 5.51s 7 5.70s ? 5.12s 7 5.29s 7 5.36s 7 5.54s 7 4.99s 7 5.02s
cnt-bits-BK.c 7 5.43s 7 4.79s 7 4.97s 7 4.74s ? 5.10s 7 5.02s 7 5.62s 7 5.10s 7 4.81s 7 5.00s
cnt-bits-BK_f.c 7 7.70s 7 6.92s 7 7.41s 7 7.23s ? 6.60s 7 7.06s 7 7.45s 7 7.02s 7 6.57s 7 7.50s
parity1.c 4 6.55s 4 19.52s 4 6.76s 4 6.11s ? 24.22s 4 6.65s T 300.97s 4 80.68s T 300.96s T 300.96s
∑

Time 242.14s 266.64s 285.59s 222.99s 189.62s 251.51s 517.86s 608.01s 522.57s 515.84s

3970X 32 Core CPU with 3.7GHz and 256GB RAM running Linux 5.4.65. We limited

CPU time to 5 minutes, memory to 8GB, and restricted each run to two cores. We built

ULTIMATE 0.2.1 from source2 and used it as baseline.

The results are summarized in Table 3.1. Labels are 4 for satisfied properties, 7 for

violated properties with counterexamples, and ? for the unknown results where the tools

could not decide. We also report timeouts (T), out-of-memory (M), crashes (j), and high-

light false positive (E7) and false negative (E4) results in gray, if any. ULTIMATE has two

modes: integer and bitvector, each specialized to the corresponding kind of programs. In

ULTIMATE’s integer mode, overflow/underflow is accounted for with assume statements.

In its bitvector mode, ULTIMATE can utilize a variety of back-end SMT solvers with inter-

nal bitvector reasoning strategies, such as CVC4, Z3, and MATHSAT (MS). By contrast,

2github.com/ultimate-pa/ultimate, b4afca67, dev

github.com/ultimate-pa/ultimate


40

ULTIMATEBWB does not use bitvector mode but instead transforms bitvector programs

(through bitwise branching) and verifies them in ULTIMATE’s integer mode using the same

set of back-end SMT solvers. Table 3.1 shows that the performance of the integer verifica-

tion with bitwise branching is comparable to the bitvector verification, despite the fact that

the bitwise branching transformation may introduce many new paths.

Because ULTIMATE’s verification algorithms heavily utilize interpolation for op-

timizations, we also ran the experiment with interpolation enabled when possible, using

MATHSAT’s interpolation (MS Itp, in both modes) and SMTINTERPOL (SItp, only in

the integer mode because SMTINTERPOL does not support bitvectors). Notably, without

bitwise branching, ULTIMATE can only verify 2 of 28 programs using the default setting

(SItp+Z3) in its integer mode while ULTIMATEBWB can verify all 28 programs in the

same settings. Moreover, while interpolation is less effective in the bitvector mode (see

MS Itp vs. MS), when combined with bitwise branching in the integer mode, it improves

over those solvers (about 1.2x speedup, the total time for all benchmarks at the bottom row

of Table 3.1, e.g. see total time, BwB MS Itp vs BwB SItp+Z3) and has the best results

(BwB SItp+Z3 column).

3.4 Termination and LTL of Bitvector Programs

We now evaluate bitwise branching on the main target: liveness properties of bitvector

programs. There are few comparable tools that support bitvector reasoning and these prop-

erties; the most comparable (and mature) tools are listed in Table 3.2, along with their

limitations.
2github.com/aprove-developers/aprove-releases/releases,

master_2019_09_03
3github.com/s-falke/kittel-koat, c00d21f, master
4github.com/sosy-lab/cpachecker,c2f1d8cce6, master
5github.com/diffblue/2ls, d35ccf73, master

github.com/aprove-developers/aprove-releases/releases
github.com/s-falke/kittel-koat
github.com/sosy-lab/cpachecker
github.com/diffblue/2ls


41

Table 3.2: Static verification tools.

Tool BitVec. Term. LTL
ULTIMATE Limited Yes Yes
APROVE3 [77] Yes Yes No
KITTEL4 [69] Yes Yes No
CPACHECKER5 Limited Yes No
2LS6 [39] Yes Yes No
ULTIMATEBWB Yes Yes Yes

Termination. We compare bitwise branching with the termination provers in the Table 3.2.

that support bitvector arithmetic, i.e., CPACHECKER, KITTEL, APROVE, and 2LS. We

used the latest release of APROVE. We build CPACHECKER 2.0.1 from source and also

built 2LS from source. We applied these tools to two benchmarks suites: (i) We first used

18 bitvector terminating programs selected from APROVE’s bitvector benchmarks [94].

Notably, those benchmarks were designed with general bitvector arithmetic in mind so

that there is only a small portion of bitvector programs (with bitwise operations) in it (i.e.

18/118 or 15%). (ii) We therefore built a second set of 31 termination benchmarks, includ-

ing 18 terminating programs (4) and 13 non-terminating programs (7), called TermBit-

Benchwith bitvector operations including bitwise |, &, ^, <<, >>, ~.

Results. Table 3.3 summarizes our results. In our tables here, rows are labeled with

the number of verified properties (4), provided counterexamples (7), timeouts (T), crashes

(j), and the number of instances where the tool could not decide (?). We also report false

positive (E7) and false negative (E4) results, if any, and highlight them in gray. For the

APROVE benchmarks, our tool can correctly prove the termination or non-termination of 2

programs, which is less than the number of programs that can be proved by CPACHECKER

(3), KITTEL (3), and 2LS (14). However, for TermBitBench, while ULTIMATEBWB

can prove all 31 programs, CPACHECKER, KITTEL, and 2LS can only prove at most 16

programs. Moreover, while our tool was built on top of ULTIMATE, it outperforms ULTI-



42

Table 3.3: Termination results.

(ii) TermBitBench (i) AproveBench

A
P

R
O

V
E

C
PA

C
H

E
C

K
E

R

K
IT

T
E

L

2L
S

U
LT

IM
A

T
E

U
LT

IM
A

T
E

B
W

B

A
P

R
O

V
E

C
PA

C
H

E
C

K
E

R

K
IT

T
E

L

2L
S

U
LT

IM
A

T
E

U
LT

IM
A

T
E

B
W

B

4 5 1 7 8 2 18 1 3 3 14 2 2
E4 1 - - - - - - - - - - -
7 6 10 - 8 - 13 - - - - - -
E7 2 7 - 3 - - - 10 - - 2 6
? 14 13 - - 29 - 10 3 - 1 14 8
T 3 - 19 12 - - 7 - 10 2 - 1
M - - - - - - - - - 1 - 1
j - - 5 - - - - 2 5 - - -

MATE in proving termination and non-termination of bitwise programs. (details shown in

Table 3.4 and Table 3.5). This is because ULTIMATE’s algorithms for synthesizing termina-

tion [92] and non-termination proofs [113] are not applicable to SMT formulas containing

bitvectors. As a consequence, ULTIMATE relies on integer-based encodings of source pro-

grams together with overapproximations of bitwise operations. These results confirm that

bitwise branching provides an effective means for termination of bitvector programs. Note

that there are 6 false results in AproveBench for termination, they are spurious counterex-

amples that arise due to Ultimate’s overapproximation for unsigned integers, they do not

involve branches created by our bitwise branching strategy.

Linear temporal logic. We compared our tool against ULTIMATE, which is the

state-of-the-art LTL prover and the only mature LTL verifier that supports some bitvector

programs. To our knowledge, there are no available bitwise benchmarks with LTL prop-

erties so we create new benchmarks for this purpose: (iii) New hand-crafted benchmarks



43

Table 3.4: Details for APROVE termination benchmarks.

APROVE CPACHECKER KITTEL 2LS ULTIMATE ULTIMATEBWB
Benchmark Expected Time Result Time Result Time Result Time Result Time Result Time Result

signed/wdk-signed-overflow/eeprom2.c 4 2.03s ? 5.68s 7 0.08s j 0.17s 4 22.91s ? 130.32s M
signed/wdk-signed-overflow/common.c 4 2.12s ? 5.49s 4 0.04s 4 0.25s 4 24.38s ? 900.44s T
unsigned/juggernaut-paper/a.c 4 2.37s ? 3.76s 7 900.25s T 0.15s 4 5.50s ? 9.72s 7

unsigned/pointer/p03.c 4 2.05s ? 4.24s ? 0.04s j 0.13s ? 7.16s ? 5.60s ?
unsigned/wdk-no-signed-overflow/gsm6102.c 4 900.26s T 3.84s 7 900.25s T 900.38s T 6.92s 4 5.96s 4

unsigned/wdk-no-signed-overflow/hw_ccmp.c 4 4.30s ? 3.59s j 0.04s 4 0.13s 4 22.03s ? 14.77s ?
unsigned/wdk-no-signed-overflow/comm.c 4 3.88s 4 5.13s 4 0.06s j 0.20s 4 19.42s ? 22.91s ?
unsigned/wdk-no-signed-overflow/gsm6103.c 4 900.26s T 4.76s 7 900.25s T 900.37s T 6.62s 4 8.73s 4

unsigned/wdk-no-signed-overflow/miniport.c 4 900.26s T 5.90s ? 900.25s T 0.25s 4 7.12s 7 8.30s 7

unsigned/wdk-no-signed-overflow/namesup2.c 4 900.26s T 3.76s 7 0.03s j 0.59s 4 7.67s 7 4.94s 7

unsigned/wdk-no-signed-overflow/eeprom.c 4 6.71s ? 9.65s 4 900.25s T 0.13s 4 16.79s ? 16.54s ?
unsigned/wdk-no-signed-overflow/intrface.c 4 900.25s T 3.77s 7 900.15s T 0.17s 4 6.61s ? 5.23s 7

unsigned/wdk-no-signed-overflow/init.c 4 5.56s ? 3.69s 7 900.14s T 0.10s 4 5.25s ? 13.11s 7

unsigned/wdk-no-signed-overflow/namesup.c 4 2.39s ? 2.01s j 0.05s 4 185.56s M 28.44s ? 27.67s ?
unsigned/wdk-no-signed-overflow/image.c 4 900.26s T 5.06s 7 796.47s T 1.24s 4 14.35s ? 18.52s ?
unsigned/wdk-no-signed-overflow/mp_util.c 4 3.82s ? 3.80s ? 900.27s T 0.95s 4 30.24s ? 26.87s ?
unsigned/wdk-no-signed-overflow/allocsup1.c 4 900.26s T 3.78s 7 0.07s j 0.17s 4 6.73s ? 5.62s ?
unsigned/juggernaut/loop6.c 4 2.33s ? 3.91s 7 900.25s T 0.15s 4 5.76s ? 7.55s 7

called LTLBitBenchof 42 C programs with LTL properties, in which bitwise operations are

heavily used in assignments, loop conditions, and branching conditions. There are 22 pro-

grams in which the provided LTL properties are satisfied (4) and 20 programs in which the

LTL properties are violated (7). (iv) Benchmarks adapted from the “BitHacks” programs,

consisting of 26 programs with LTL properties (18 satisfied and 8 violated).

ULTIMATE’s configuration for LTL software model checking uses the configuration

introduced in [61], with two differences. We disabled small block encoding, because our

rules can introduce a large number of disjunctions which prevented verification with small

block encoding in three instances. Because small block encoding also prevents the creation

of goto edges in ULTIMATE’s control-flow graph, and because the Büchi program product

construction cannot deal with these edges, we had to enable their explicit removal.

The Table 3.6 summarizes the result of applying ULTIMATE and ULTIMATEBWB

on these two bitvector benchmarks (see Table 3.7 and Table 3.8 for details). Besides the

successful verification results for satisfied (4) and violated (7) LTL properties, we also

report unknown (?) results, as well as timeout (T), out-of-memory (M), and crashes (j).

ULTIMATEBWB outperforms ULTIMATE: ULTIMATEBWB can successfully verify 41 of

42 programs in LTLBitBench and 18 of 26 BitHacks programs while ULTIMATE can only



44

Table 3.5: Details for TermBitBench.

APROVE CPACHECKER KITTEL 2LS ULTIMATE ULTIMATEBWB
Benchmark Expected Time Result Time Result Time Result Time Result Time Result Time Result

xor-01-false.c 7 18.41s 7 5.17s 7 900.24s T 900.53s T 5.54s ? 6.39s 7

and-04-false.c 7 185.04s 7 3.68s 7 900.24s T 0.15s 7 5.33s ? 7.78s 7

not-04-false.c 7 4.14s ? 3.78s 7 0.08s j 0.14s 7 6.84s ? 6.78s 7

not-05-false.c 7 3.03s ? 4.64s 7 0.10s j 0.13s 7 5.50s ? 8.66s 7

and-05-false.c 7 10.11s ? 3.79s 7 900.32s T 0.16s 7 5.60s ? 8.17s 7

and-01-false.c 7 4.83s ? 5.21s ? 900.24s T 900.46s T 6.27s ? 6.35s 7

or-02-false.c 7 13.66s 7 3.93s 7 900.28s T 900.39s T 7.40s ? 8.28s 7

not-03-false.c 7 2.95s ? 3.86s 7 0.10s j 0.17s 7 5.34s ? 7.25s 7

and-03-false.c 7 4.65s 7 3.67s 7 900.24s T 0.14s 7 5.29s ? 5.63s 7

not-02-false.c 7 1.90s 4 3.84s 7 0.05s j 0.15s 7 5.26s ? 4.86s 7

or-05-false.c 7 6.29s 7 4.18s ? 900.35s T 0.16s 7 6.07s ? 9.34s 7

or-01-false.c 7 5.76s 7 3.73s 7 900.31s T 900.69s T 7.64s ? 10.22s 7

and-02-false.c 7 6.30s ? 5.78s ? 900.24s T 900.39s T 6.72s ? 5.89s 7

not-01.c 4 902.06s T 4.69s ? 0.06s 4 0.39s 4 6.54s ? 5.52s 4

and-02.c 4 901.23s T 8.00s ? 900.25s T 900.38s T 6.05s ? 11.63s 4

or-01.c 4 23.72s 4 6.50s ? 900.29s T 900.41s T 7.85s ? 13.10s 4

xor-01.c 4 4.14s 4 4.77s 4 0.05s 4 0.31s 4 7.16s ? 8.07s 4

and-03.c 4 12.83s ? 3.80s 7 900.25s T 900.44s T 6.36s ? 6.98s 4

not-02.c 4 3.11s ? 4.03s 7 0.31s j 0.18s 7 5.09s ? 9.23s 4

and-01.c 4 5.74s ? 6.05s ? 900.25s T 900.46s T 6.04s ? 8.14s 4

or-02.c 4 10.16s 4 4.14s ? 900.29s T 900.46s T 7.42s ? 6.56s 4

or-03.c 4 5.27s 4 4.18s ? 0.04s 4 0.24s 4 5.83s 4 6.94s 4

not-03.c 4 3.95s ? 5.32s 7 0.06s 4 0.27s 4 5.55s ? 6.30s 4

and-04.c 4 901.56s T 3.61s 7 900.17s T 0.21s 4 5.50s ? 8.56s 4

or-06.c 4 7.48s 4 4.22s ? 0.04s 4 0.31s 4 7.11s 4 6.22s 4

and-05.c 4 4.40s ? 3.61s 7 900.37s T 0.19s 4 7.04s ? 11.40s 4

not-04.c 4 2.39s ? 4.70s ? 0.10s 4 900.42s T 11.49s ? 12.85s 4

or-04.c 4 17.17s 7 4.18s 7 900.30s T 0.15s 7 8.13s ? 5.90s 4

or-05.c 4 5.12s 7 6.44s ? 900.37s T 0.16s 7 7.22s ? 8.02s 4

and-06.c 4 10.12s ? 5.78s ? 900.25s T 900.56s T 7.24s ? 9.42s 4

not-05.c 4 3.21s ? 4.30s 7 0.06s 4 0.24s 4 5.55s ? 5.88s 4

handle a few of them. Note that we have more out-of-memory results in BitHacks Bench-

marks, perhaps due to memory consumption reasoning about the introduced paths, how-

ever, in most of the case it helps the verification tool prove a wider range of bitvector

programs effectively.

In conclusion, bitwise branching appears to be the first effective technique for veri-

fying LTL properties of bitvector programs.



45

Table 3.6: LTL benchmarks experiment overview.

(iv)Bithacks (iii)LTLBit
Bench

U
LT

IM
A

T
E

w
.B

W
B

U
LT

IM
A

T
E

w
.B

W
B

4 3 10 - 21
7 - 7 - 20
? 21 5 42 -
T 1 1 - 1
M 1 3 - -

Table 3.7: Details for LTL Bithack benchmarks.

ULTIMATE ULTIMATEBWB
Benchmark Property Expected Time Result Time Result

counting-bits-BK1_false.c �(♦y >= 0) 7 8.80s ? 10.75s 7

consecutive-zero-bits-trailing_false.c ♦y = 1 7 5.91s ? 7.24s ?
counting-bits-BK_false.c �(♦y <= 1) 7 6.93s ? 8.15s 7

display-bit1_false.c ♦y > 1 7 24.55s ? 59.18s 7

parity_false.c ♦y >= 1 7 23.81s ? 9.09s 7

display-bit_false.c ♦y < 0 7 27.20s ? 64.63s 7

counting-bits-set_false.c ♦y >= 1 7 8.88s ? 7.77s 7

reverse-bits1_false.c ♦n < 0 7 8.11s ? 10.21s 7

logbase2.c ♦y >= 1 4 7.60s ? 7.49s ?
base64_ltl.c �(♦start = 1) 4 124.37s M 602.61s M
modulus-division.c ♦y > 1 4 6.67s ? 17.25s ?
consecutive-zero-bits-trailing.c ♦y >= 1 4 6.07s ? 7.51s 4

interleave-bits.c ♦y >= 1 4 11.40s ? 300.66s ?
logbase2-N-bit1.c ♦y >= 1 4 12.39s ? 547.43s M
reverse-N-bit.c ♦n >= 1 4 6.91s 4 13.09s 4

counting-bits-set.c ♦y >= 1 4 9.23s ? 8.52s 4

consecutive-zero-bits.c ♦y >= 1 4 5.29s 4 5.85s 4

counting-bits-BK.c �(♦y <= 1) 4 6.63s ? 8.46s 4

dropbf_ltl.c �(A! = 1 ∨RELEASE = 0) 4 8.42s 4 13.47s 4

reverse-bits.c ♦y >= 1 4 7.21s ? 10.81s ?
counting-bits-lookup.c ♦y >= 1 4 900.41s T 900.41s T
display-bit.c ♦y >= 32 4 24.99s ? 705.44s M
counting-bits-BK1.c �(♦y >= 0) 4 7.51s ? 8.59s 4

display-bit1.c ♦y >= 1 4 20.46s ? 7.29s 4

reverse-bits1.c ♦n < 0 4 6.33s ? 12.55s 4

parity.c ♦y >= 1 4 19.67s ? 6.93s 4



46

Table 3.8: Details for LTLBitBench.

ULTIMATE ULTIMATEBWB
Benchmark Property Expected Time Result Time Result

and_guard2_false.c ♦z ≥ 100 7 7.54s ? 7.65s 7

xor_stem1_false.c ♦n < 0 7 5.78s ? 6.41s 7

and_guard_false.c ♦y > 0 7 7.11s ? 5.52s 7

and_stem_false.c ♦n < 0 7 6.34s ? 5.86s 7

xor_stem_false.c ♦n < 0 7 5.67s ? 6.33s 7

xor_guard_false.c ♦n > 0 7 6.40s ? 6.24s 7

or_loop1_false.c �(♦n < 0) 7 6.98s ? 6.76s 7

and_loop_false.c ♦y ≥ 1 7 5.32s ? 9.28s 7

and_stem1_false.c ♦n < 0 7 7.63s ? 5.75s 7

xor_loop_false.c ♦n < 0 7 6.18s ? 8.01s 7

or_guard_false.c ♦n < 0 7 5.82s ? 5.96s 7

and_guard1_false.c ♦n > 0 7 7.82s ? 6.04s 7

com_loop_false.c ♦y < 0 7 5.70s ? 6.81s 7

or_stem_false.c ♦n < 0 7 7.11s ? 5.81s 7

and_guard4_false.c ♦n > 0 7 8.62s ? 5.55s 7

and_stem2_false.c ♦n > 0 7 7.69s ? 6.35s 7

or_loop2_false.c ♦n > 0 7 6.47s ? 8.89s 7

and_loop1_false.c ♦z < 0 7 9.22s ? 7.60s 7

com_stem_false.c �(♦y < 0) 7 8.89s ? 9.52s 7

or_loop_false.c �(♦n < 0) 7 7.60s ? 7.82s 7

and_stem2.c ♦n > 0 4 5.81s ? 5.36s 4

xor_stem1.c ♦n < 0 4 7.05s ? 5.76s 4

xor_guard.c ♦n < 0 4 6.41s ? 5.67s 4

and_guard4.c ♦n > 0 4 10.25s ? 6.00s 4

or_stem.c ♦n < 0 4 5.38s ? 7.38s 4

com_stem.c �(♦y = 1) 4 6.50s ? 5.59s 4

xor_stem.c ♦n < 0 4 5.40s ? 5.41s 4

xor_loop.c ♦n < 0 4 6.14s ? 7.97s 4

and_stem1.c ♦n < 0 4 7.05s ? 5.32s 4

and_guard.c ♦n < 0 4 6.43s ? 901.21s T
and_loop1.c ♦z < 0 4 7.63s ? 5.46s 4

com_loop.c ♦y < 0 4 6.44s ? 5.39s 4

or_loop.c �(♦n < 0) 4 7.55s ? 10.05s 4

and_guard2.c ♦z ≥ 100 4 9.58s ? 17.04s 4

or_loop2.c ♦n < 0 4 6.17s ? 6.33s 4

and_stem.c ♦n < 0 4 5.49s ? 5.57s 4

or_0s_int.c ♦p = 1 4 67.11s ? 9.38s 4

and_loop.c ♦y ≥ 1 4 6.15s ? 5.92s 4

and_guard1.c ♦n > 0 4 7.81s ? 8.04s 4

or_loop1.c �(♦n < 0) 4 8.44s ? 6.58s 4

or_loop3.c �(♦n < 0) 4 7.47s ? 6.11s 4

or_guard.c ♦n < 0 4 5.92s ? 4.52s 4



47

Chapter 4

Temporal Verification of Decompiled Binaries

We have discussed that despite challenges in binary lifting, verifying decompiled program

involves heavy reasoning in bitvector operations, in which our bitwise branching can be

helpful within the scope of existing verification techniques. There are many types of rep-

resentations for the lifted code (e.g. LLVM IR), our approach to verify binary programs is

to decompile the binary and lift it to a much higher level representation, in our experiment

we lift the assembly code to a C syntax program that can be parsed by standard libraries.

Besides nested structures and other common syntax in standard C, a simplified statement

syntax of our decompiled program is shown as following, AStmt is a statement in our

decompiled program that simulates the instruction from LLVM IR.

Stmt ::= do { Stmt } while(1);

| if(Expr) AStmt goto Label else AStmt goto Label;

| Lhs:=Expr ;

| return;

| Label: Stmt

| goto Label;

| Stmt; Stmt

AStmt ::= Lhs:=Expr; | AStmt; AStmt

In this chapter, we first provide an in-depth case study of decompiled (“lifted”) bi-

nary programs, which emulate X86 execution through frequent use of bitvector operations,

we then summarize challenges in lifting binaries for verification, and we present transfor-



48

mations that are needed to re-target today’s lifting tools from re-compilation to make them

suitable for verification tools. With the implementation of our bitwise branching rules, we

develop a new tool DARKSEA, the first tool capable of verifying reachability, termination,

and LTL of lifted binaries, DARKSEA also provides complete binary decompilation from

end to end.

4.1 Overview

In recent years many tools have been developed for decompiling (or “lifting”) binaries into

a source code format [34, 122, 14, 63, 168]. The resulting code, however, has lost the

original source abstractions and instead emulates the hardware, making frequent use of

bitvector operations. These challenging programs are beyond the capabilities of existing

tools for LTL verification, making them an interesting case study and an important appli-

cation for binary verification.

For example, consider the (source) program shown in Figure 4.1. This program,

which does not contain any bitvector operations, is taken from the ULTIMATE repository1.

Some existing techniques and tools (e.g. [49, 10]) can prove that the LTL property G(x >

while(1) {
y = 1; x = *;
while (x>0) {

x--;
if (x <= 1)
y = 0;

}
}

Figure 4.1: An LTL example from ULTIMATE repository.

0 ⇒ F(y = 0)) holds. However, after the program is compiled (with gcc) and then

disassembled and lifted (with IDPro and MCSEMA), the resulting code has many bitvector
1http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/

simple/PotentialMinimizeSEVPABug.c

http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c
http://github.com/ultimate-pa/ultimate/blob/dev/trunk/examples/LTL/simple/PotentialMinimizeSEVPABug.c


49

operations. The resulting lifted code is quite non-trivial (full version in Apx. A.2) and

required substantial engineering efforts just to parse and analyze with existing verifiers

(see Sec. 4.2). Let’s first focus on the bitvector complexities; here is a fragment of the

lifted IR (in C for readability):

1 while(true) {

2 tmp_x = load i32, i32* bitcast (%x_type* @x to i32*)

3 ...

4 if ( ((tmp_x >> 31) == 0) & ((tmp_x == 0) ^ true) ) {

5 tmp_40 = add i32 tmp_x, -1

6 store i32 tmp_40, i32* bitcast (%x_type* @x to i32*)

7 tmp_xp = load i32, i32* bitcast (%x_type* @x to i32*)

8 tmp_42 = tmp_xp + -1; tmp_45 = tmp_42 >> 31;

9 tmp_43 = tmp_xp + -2; tmp_44 = tmp_43 >> 31;

10 if (((((((tmp_42 != 0u)&1)) & ((((((tmp_44 == 0u)&1)) ^ ((((((tmp_44 ^ tmp_45) +

tmp_45)) == 2u)&1)))&1)))&1))) {

11 store i32 0, i32* bitcast (%y_type* @y to i32*)

12 }

13 } else { break; }

14 }

Line 4 corresponds to the x>0 comparison, and Line 10 corresponds to the x<=1

comparison. These bitvector operations, introduced to emulate the behavior of the binary,

make it challenging for existing verification tools. Our bitwise branching theory introduced

in Chapter 3 can help overcome this challenge. We develop a new tool DARKSEA that

uses bitwise branching in the context of a decompilation toolchain involving IDA PRO

(used as disassembler), MCSEMA and ULTIMATE with our bitwise branching implemented.

The lifting performed by tools like MCSEMA is geared toward recompilation rather than

verification, thus foiling existing tools.

In Sec. 4.2, we introduce some background about binary de-compilation and demon-

strate verification-oriented transformations in binary de-compilation with a detailed exam-

ple. In Sec. 4.4, we summarize our translation strategy FABE in DARKSEA. We introduce



50

our binary verification tool DARKSEA design in Sec. 4.5, and show experimental results

for the evaluation of DARKSEA.

4.2 LTL Verification of Decompiled Binaries

Decompiled binary executables are rife with bitvector operations, making them an inter-

esting domain for the application of bitwise branching. Many tools [63, 11, 148, 73, 74,

101, 59] have been developed for decompilation. Similar to compilation, the decompila-

tion process consists of multiple phases, beginning with disassembly. Some techniques

have emerged for verifying low-level aspects of decompiled binaries such as architectural

semantics [147, 57, 17], decompilation into logic [120, 121, 122, 168], and translation val-

idation [56] (discussed in Chapter 1). Further along the decompilation process, other tools

aim to represent a binary at a higher level of abstraction through a process called lifting. A

lifted binary can be represented in IR or source code, but includes only some of the source-

level abstractions of the original program. Instead, a lifted “program” emulates the machine

itself, with data structures that mimic the hardware (e.g. registers, flags, stack, heap, etc.)

and control that mimics the behavior of the binary. To a large extent today’s automated

verification techniques have relied on source abstractions (e.g. invariants and rank func-

tions over loop variables, structured control flow, procedure boundaries, etc.). A principal

challenge in verifying lifted binaries is that the target is an emulated machine, therefore the

decompiled “program” involves complications such as irrelevant code for emulating the

environment, data structures for emulating the architecture, and lifted binaries frequently

use bitvector operations e.g. to reflect signed/unsigned comparison of variables whose type

was lost in the compilation.

As we show in Sec. 4.5, lifted programs are beyond the capabilities of termination

verification tools (ULTIMATE [89], CPACHECKER [152], APROVE [77] or KITTEL [68]).



51

Even though some lifting tools emit programs in familiar languages (LLVM IR or C), those

programs employ many bitwise operations and complex (often irrelevant) data and control

that place them beyond, using available verification tools can provide a wide range of ver-

ification techniques that are already implemented and tested, therefore we can shift our

focus to the defects of these techniques, i.e. the verification target has bitvector operations

and other complications.

Returning to previous our previous example in Section 4.1, while the source code for

the inner loop of the program in Fig. 4.1 is straight-forward (decrementing x and assigning

0 to y if x <= 1), the corresponding expressions in the lifted binaries involve multiple

bitvector operations:

(((tmp_42 != 0u)&1) & ((((tmp_44 == 0u)&1 ^

(((((tmp_44 ^ tmp_45) + tmp_45) == 2u)&1)))&1)))&1

This expression simulates branch comparisons that the machine would perform on values

whose type was discarded during compilation. The source code variable x is a signed

integer, but the compilation has stripped its type. During the decompilation, to approximate

the origin code from binary, lifting procedures consider these tmp variables (and all integer

variables) to be unsigned. Meanwhile, in the binary, the condition x<=0 is compiled to be

a signed comparison. Therefore, lifting recreates a signed comparison using the unsigned

tmp variables.

In this scenario, lifted binaries are good candidates for bitwise branching. For the

above example, we can use three rules: R-RShift-Pos, R-And-1, R-And-Log. The variable

tmp_x (i.e.x loaded from memory) is a signed integer but, corresponds to the condition “x

> 0” in the original source code, where “x” is a “signed integer”; when the original source

code is translated into binary code, type of tmp_x is stripped and thus, after decompilation,



52

the type of tmp_x is unknown. To approximate, lifting procedures consider tmp_x (and all

integers) to be unsigned (McSema considers every integer unsigned). Meanwhile, in the

binary, the condition x>0 is compiled to be a signed comparison. Therefore, binary lifting

will create a signed comparison using the unsigned version of tmp_x. The decompiled code

of the inner loop of this program as shown in Section 4.1, notice that the comparison x>0

is instead represented on Line 4 as:

((tmp_x >> 31) == 0) & ((tmp_x == 0) ^ true)

Above, the if statement on Line 4 is a bitwise calculation equivalent to x>0.

The variable tmp_x (i.e.x loaded from memory) is a signed integer but, corresponds

to the condition “x > 0” in the original source code, where “x” is a “signed integer”; when

the original source code is translated into binary code, the type of tmp_x is stripped and

thus, after decompilation, the type of tmp_x is unknown. To approximate, lifting proce-

dures consider tmp_x (and all integers) to be unsigned (McSema considers every integer

unsigned). Meanwhile, in the binary, the condition x>0 is compiled to be a signed compar-

ison. Therefore, binary lifting will create a signed comparison using the unsigned version

of tmp_x. Roughly, the lifting process proceeds as:

(int)tmp_x > 0  tmp_x != 0 & tmp_x <= 0x7fffffff

 tmp_x != 0 & (tmp_x>>31) == 0

 tmp_x != 0 & ( ((tmp_x>>31) == 0) ^ 1)

In lifted programs, the operands of bitwise expressions often involve subexpressions whose

values are 0, 1, -1, MAXINT, etc. Moreover, the results of bitwise expressions are also

often simple (compared to the structure of source code). Notice that in the above example,

tmp_44 is the 31. Consequently, we can often avoid bitwise comparisons altogether by case



53

splitting on values or ranges of values for the operands and constraining the corresponding

bitwise result accordingly.

4.3 Verification Oriented Translations for Decompiled Binaries

We here explain via previous example the need for the translations, introduced in Sec. 4.5

for evaluation. Figure 4.2 shows an (condensed) example of the result of lifting a GCC-

compiled binary version of program in Figure 4.1 (using MCSEMA). In the following,

we describe, in detail, how decompilation tools (e.g. MCSEMA) target re-compilation and

the challenges this poses for existing verification techniques and tools. We then describe

translations performed by DARKSEA to make lifted binaries more amenable to verification.

As it will be discussed in Sec. 4.4, the translations below were implemented as passes on

the lifted LLVM IR.

Run-time environment. Binary lifting de-compiles into a program that mimics the bi-

nary behavior. To ensure that a new re-compiled binary would run correctly, lifting yields

code that switches the contexts between the run-time environments and the simulated code,

somewhat akin to how a loader first moves environment variables onto the stack. This

context-switch code wraps around the simulated program and is indispensable for execu-

tion of re-compiled code. Context-switch code can be fairly complex. For example, it

frequently uses assembly code to move values between the physical environment (e.g. en-

vironment variables like $PATH) and the simulated constructs (e.g. registers and the stack).

The initial state of the registers is also loaded from the runtime, as seen by the instructions

in callout 1 in Fig. 4.2. Tracing back the origins of these values, which stem from the

runtime code, poses a nearly impossible, yet unnecessary task for verification tools. For

most verification tasks, it does not matter where the initial values of registers or environ-

ment variables such as $PATH come from; we can just treat them as nondeterministic input



54

Source Code

Fragment of the lifted binary (represented in LLVM IR)

Compile X86 Binary

D
e

c
o

m
p

ile

(Remainder omitted - Full version in supplemental materials.)

E
m

u
la

te
d

 

e
n
v
ir

o
n
m

e
n
t 

E
m

u
la

ti
o

n
 w

it
h
 n

e
st

e
d

st
ru

ct
s,

 c
o

n
cr

e
te

 a
d

d
re

ss
in

g

E
m

u
la

ti
o

n
 s

ta
te

 i
n
 

p
ro

ce
d

u
re

 c
a
ll
s

H
e
a
v
y
 u

se
 o

f 

b
it

w
is

e
 o

p
e
ra

ti
o

n
s

S
im

p
le

 L
L
V

M
 to

 C
 

T
ra

n
s
la

tio
n

 (llv
m

-c
b

e
)

tmp__31 !tmp__31

(Long prelude omitted to focus on user code.)

Fragment of the lifted binary (represented in C)

1

2

3

4

define dso_local i32 @main(i64 %0, i64 %1, i64 %2) #7 !remill.function.type

    !1307 !remill.function.tie !1310 {

  %4 = load volatile i64, i64* getelementptr inbounds (%struct.State,

     %struct.State* @__mcsema_reg_state, i64 0, i32 6, i32 13, i32 0, i32 0), align 8

  %5 = icmp eq i64 %4, 0

  br i1 %5, label %is_null.i, label %__mcsema_verify_reg_state.exit

  . . .

  store i64 %0, i64* getelementptr inbounds (%struct.State, %struct.State*

      @__mcsema_reg_state, i64 0, i32 6, i32 11, i32 0, i32 0), align 8

  store i64 %1, i64* getelementptr inbounds (%struct.State, %struct.State* 

      @__mcsema_reg_state, i64 0, i32 6, i32 9, i32 0, i32 0), align 8

  store i64 %2, i64* getelementptr inbounds (%struct.State, %struct.State*

      @__mcsema_reg_state, i64 0, i32 6, i32 7, i32 0, i32 0), align 8

  %9 = add i64 %6, -8

  store i64 %9, i64* getelementptr inbounds (%struct.State, %struct.State*

      @__mcsema_reg_state, i64 0, i32 6, i32 13, i32 0, i32 0), align 8

  %10 = tail call %struct.Memory* @sub_401111_main(%struct.State* nonnull

     @__mcsema_reg_state, i64 4198673, %struct.Memory* null)

  unreachable

  . . . 

  tmp__4 = (&tmp__1->field6.field1.field0);

  tmp__5 = (&tmp__4->field0);

  EAX = ((unsigned int*)tmp__4);

  tmp__9 = (&tmp__1->field6.field13.field0.field0);

  tmp__10 = *tmp__9;

  tmp__11 = llvm_add_u64(tmp__10, (18446744073709551608UL));

  . . .

block_401159:

  tmp__29 = *((unsigned int*)(&x));

  tmp__30 = llvm_lshr_u32(tmp__29, 31);

  tmp__31 = (((((tmp__30 == 0u)&1)) & (((~((((tmp__29 == 0u)&1))))&1)))&1);

  tmp__32 = llvm_add_u64((llvm_select_u64(tmp__31, 

(18446744073709551572UL), (2UL))), (llvm_add_u64(tmp__27, (8UL))));

  if (tmp__31) { goto block_401135;} else { goto block_401163; }

block_401135:

  *((unsigned int*)(&x)) = (llvm_add_u32(tmp__29, -1));

  tmp__33 = *((unsigned int*)(&x));

  tmp__34 = llvm_add_u32(tmp__33, -1);

  tmp__35 = llvm_lshr_u32(tmp__34, 31);

  tmp__36 = llvm_lshr_u32(tmp__33, 31);

  tmp__37 = (((((tmp__34 != 0u)&1)) & ((((((tmp__35 == 0u)&1)) ^ 

((((llvm_add_u32((tmp__35 ^ tmp__36), tmp__36)) == 2u)&1)))&1)))&1);

  tmp__38 = llvm_add_u64((llvm_select_u64(tmp__37, (12UL), (2UL))), 

(llvm_add_u64(tmp__32, (24UL))));

  if (tmp__37) {

    tmp__39__PHI_TEMPORARY = tmp__38;  tmp__40__PHI_TEMPORARY = tmp__28; 

    . . . (Remainder omitted - Full version in supplemental materials.)

Figure 4.2: Challenges involved in reasoning about the lifted binary of the program in
Fig. 4.1.



55

values on the stack.

Translation: Removing verification-unrelated code and data. We implemented a

pass to analyze lifted output and decouple context-switch code from the code that simu-

lates the original program. We first locate the original main function in the simulated code

and then follow the control flow to statically extract and trim code that can reach main.

Further, the context-switch code also includes program-dependent functions that are regis-

tered to be executed before the main or after the exit. To avoid missing such functions

in verification, we allocate calls to them at the beginning or the end of the main function,

following the order these functions are registered to run in the original binary.

Passing emulation state through procedures. Binary lifting for recompilation generates

programs in which function calls are used to pass the emulation state. This can be seen, for

example, in callout 2 in Fig. 4.2, where struct.State is passed as the first argument to

sub_401111_main. These arguments are not part of the original program. Rather, lifting

introduces these additional arguments to simulate the possibility of context-switches within

function calls. Further, when the lifted code is recompiled, code simulating the callee can

access the contexts through these struct.State arguments, these arguments (correspond-

ing to source code arguments) are not pointers pointing to different fields of the global

struct.state, which, is in running time typically, more efficient than directly accessing

the global data structure.

Interprocedural reasoning is known to make verification more challenging and re-

quires more sophisticated algorithms such as procedure summaries [172, 62] and nested

interpolants [91], especially when context sensitivity is required. When machine emulation

involves expanding the use of arguments, we found this complicates analysis and hampers

verification.

Translation: Simplifying function arguments. Adding arguments to user procedures

(as done by MCSEMA) complicates verification. Fortunately, a translation is possible: the



56

arguments in a MCSEMA-generated function point to the same global data structure. As

such, we eliminate these arguments from every function call. We then create a pointer

pointing to the global data struct and replace all uses of the first argument in the function

body with uses of our new pointer.

Nested structures for emulation. Lifted binaries encode complicated structures that

simulate hardware features such as registers, arithmetic flags, FPU status flags, the

stack, and instruction pointers. These are represented as nested structures, e.g.state->

general_registers.register13.union.uint64cell. This can be seen, for example,

in callout 3 in Fig. 4.2, where the field tmp__1->field6.field13.field0.field0 is

accessed. The use of nesting in these structures provides efficiency: constructs that are

commonly used together (e.g. general purpose registers) can be artificially grouped to the

same cache line, avoiding cache evictions. These nested structures mirror the computer

organization and also simplify the management of constructs during lifting. However, rea-

soning about these nested data structures is difficult because verification tools cannot make

any assumptions about where these data-structures come from, how they are used, and

most importantly, how they may be aliased. Consequently, verification tools have to care-

fully track heap references to infer non-aliasing, even though the lifting process ensures

that they will not.

Translation: Flattening the emulation state. Many of the data structures for

the emulated state are functionally independent and hence the complex nesting is

not necessary to maintain the original semantics. We implemented a pass to flat-

ten the data structures. We create individual variables for all the innermost and sep-

arable fields. We then translate accesses to these nested structures, with use-define

reasoning to identify all the accesses to a flattened field. For the aforementioned

state->general_registers.register13.union.uint64cell, we allocate

a new global variable register13 with the same type of uint64cell and re-locate



57

all the original accesses to register13.

Other challenges. Finally, lifted binaries pose other quirks that needed to be addressed be-

fore they can be verified. We encountered many of them and needed to perform additional

analyses, translations, slicing, etc, that we will discuss in Section 4.4. For example, some

of the lifted code is irrelevant to the property of interest. Slicing, which is already useful in

verifying source code, is even more essential for lifted binaries. Another case is that, lifted

binaries often involve type-casting short-cuts to enable efficient re-compilation, such as the

following:

1 struct OC_a{uint64_t f0;}

2 int func(){

3 struct OC_a tmp;

4 uint64_t* t_ptr;

5 t_ptr=(uint64_t*)&tmp;

6 }

7

1 struct OC_a{uint64_t f0;}

2 int func() {

3 struct OC_a tmp;

4 uint64_t* t_ptr;

5 t_ptr=(uint64_t*)(&tmp.f0);

6 }

7

Here, t_ptr is supposed to point to the first field in tmp. Lifting can take a short-cut

to make t_ptr directly point to tmp because the first field in tmp and tmp itself have

identical memory addresses. If not correctly used, type casting may return unsafe and

incorrectly casted values, violating origin source code intended pointer semantics, and also

increasing pointer analysis in verification. Our fixing eliminates such short-cut to ensure

safety of type-casting, these types of short-cut can typically ensure the correctness but

reduce certain operations. We found that verification tools often cannot treat the code on

the left and lose information.

Another example is shown below in Figure 4.3, shows a lifted program before and

after we replace tmp1->field6 with g_ptr->field6. We implemented a pass to



58

Before Simplifying
1 s t r u c t OC_State g _ s t a t e ;
2 i n t main ( ) {
3 s t r u c t OC_State * tmp = &g _ s t a t e
4 foo ( tmp , 0 , 0 ) ; / / a r g p a s s i n g
5 r e t u r n 0 ;
6 }
7 vo id foo ( OC_State * tmp1 , u i n t 6 4 _ t tmp2 ,

vo id * tmp3 ) {
8 s t r u c t OC_anon* tmp4 ;
9 tmp4 = (&tmp1−> f i e l d 6 ) ;

10 e r r o r ( tmp1 , tmp2 , tmp3 ) ;
11 }

After Simplifying
1 s t r u c t OC_State g _ s t a t e ;
2 s t r u c t OC_State * g _ p t r / / p t r
3 = &g _ s t a t e ;
4 i n t main ( ) {
5 foo ( ) ; / / a r g s . removed
6 r e t u r n 0 ;
7 }
8 vo id foo ( ) {
9 s t r u c t OC_anon* tmp4 ;

10 tmp4 = ( g _ p t r−> f i e l d 6 ) ; / / g l o b a l
11 e r r o r ( ) ; / / a r g s . removed
12 }

Figure 4.3: Example showing our argument removal. In the main function before our
simplification, tmp, which points to a global data structure g_state, is passed to the
foo function and its alias tmp1 is further passed to error. After our simplification, all
the arguments are removed, and the accesses to tmp and tmp1 are fixed.

revoke the type-casting shortcuts described above, making the dereference more explicit.

MCSEMA also often brings redundant type-casting. For instance, it can create operations

like *((int*)(&p)) even if p has the type of int. DARKSEA strips redundant type-

casting, in a way such as changing *((int*)(&p)) to *(&p) and then p.

4.4 DARKSEA: A Toolchain for Temporal Verification of Lifted Binaries

Bitvector operations are not the only issue: lifted binaries have several other wrinkles (as

we discussed in previous sections) that preclude them from being verified with today’s

tools. We address them in a new toolchain called DARKSEA, that is capable of verifying

reachability, termination, and LTL properties of lifted binaries. DARKSEA is comprised of

several components, depicted in the following diagram:

DARKSEA

Binary
Translations 

for verification

McSema

IR
IDAPro +
McSema

ULTIMATEBWB

Bitwise Branching
Proof or 

cex.

Slicing &
llvm-cbe C

DARKSEA

IR

Figure 4.4: The work-flow of our de-compilation.



59

DARKSEA takes as input a lifted binary, internally call a disassembler IDA PRO

for disassembly, and calls MCSEMA as a lifting tool works on disassembly, with various

code recovery and control flow reconstruction techniques shipped with these tools, disas-

sembly code is lifted and mapped into LLVM IR format. DARKSEA implements various

transformation passes (in Sec. 4.3) processing the decompiled IR, and we have our IR that

is friendly for verification, with property-driven program slicing, we can further slice down

the transformed IR (DARKSEA IR), which finally can be converted to C via llvm-cbe.

The final step in DARKSEA is calling verification tool, ULTIMATEBWB with our bitwise

branching, performing verification tasks, and reporting the verification results.

4.4.1 FABE in DARKSEA

Lifting tools like MCSEMA [14, 63] are often designed with the goal of re-compilation

rather than verification. Consequently, the MCSEMA IR, even if converted to C, cannot be

analyzed by existing tools (see Sec. 4.5) which either crash, timeout, out of memory, or fail

during parsing. We therefore perform a series of translations discussed below to re-target

the lifted binaries into a format more amenable to verification, which we then input to UL-

TIMATEBWB. We now introduce our techniques learned from previous section to enable

automated termination and temporal verification of lifted binaries. To this end, we first

aim to marry the realistic capabilities of the lifting process with the requirements needed

for verifying temporal properties. We propose flat abstract binary emulation (FABE), a

lifting format in which the emulation of the machine is more amenable to verification.

FABE places requirements on how emulation data structures must be organized, how pro-

cedures can be used, and how the environment (i.e. non-user code) must be treated. We

then describe translations from the output of an existing lifting tool [63] into FABE format.

FABE differs from existing lifted output and is also distinct from compilation-side IRs.

For example, FABE excludes lifted output that involves aspects of the machine emulation



60

that are needed for re-compilation but are not part of the original program. Additionally,

unlike compilation-side IRs, procedure calls are not permitted, even if they were present

in the original program source, this mitigates the burden of inter-procedure analysis espe-

cially having pointer arguments in it. FABE differs from compilation-chain IRs for a few

reasons, notably that procedure calls are not permitted. Intuitively FABE thus allows mul-

tiple benefits in the community of safety/termination/temporal verification tools. We show

that FABE enjoys practical benefits akin to traditional IRs such as serving as a common

target format for lifting (e.g. from x86 or amd64), common source format for verification

(e.g. ULTIMATE, CPACHECKER, APROVE, KITTEL), and a unified format for analysis.

Furthermore, since it is impossible in general to re-create the original source, lifting

techniques instead generate a program that simulates execution of binary code in the target

machine architecture. These tools thus generate data structures that represent components

such as registers (e.g. RBP, RSP, IP), arithmetic flags, the stack (via an array), the heap,

etc. In our experience, we found four impediments to applying today’s verification tools on

lifted binaries. In the following, we summarize the impediment and describe translations

performed by DARKSEA to address the issue (as details discussed in Sec. 4.3). FABE

translations summarized below work with LLVM-8.0 and consist of around 500 lines of

C++ and 200 lines of bash. We also identified and fixed several defects in MCSEMA [3, 2,

5].

1. Run-time environment. For re-compilation, lifting yields code that switches context

between the run-time environments and the simulated code, akin to how a loader

moves environment variables onto the stack. The first pass of DARKSEA analyzes

lifted output to discover the original program’s main, decouples the surrounding

context-switch code, and removes it from the code that simulates the original pro-

gram, starting from main.



61

2. Passing emulation state through procedures. MCSEMA generates lifted programs

in which function arguments pass emulation state that is used for re-compilation.

When the lifted code is recompiled, code simulating the callee can access the con-

texts through these struct.State arguments, which is typically more efficient than

directly accessing the global data structure. As this burdens verification analysis on

the lifted programs, another pass implemented in DARKSEA eliminates these argu-

ments from every function call.

3. Nested structures. Lifted binaries simulate hardware features (e.g. registers, arith-

metic flags, FPU status flags) and, for cache efficiency, represent them as nested

structures. DARKSEA flattens these nested data structures, creating individual vari-

ables for all the innermost and separable fields, and then translates accesses to these

nested structures.

4. Property-directed slicing. Not all the instructions are relevant to the properties we

aim to verify, so we further slice the program to keep only property-dependent code,

using DG [38] (an open source library for LLVM program analysis) in termination-

sensitive mode. For LTL properties, we use the atomic propositions’ variables to

seed our slicing criteria. Given slicing criteria (e.g. a use of a global variable), DG

identifies both control-flow dependent code and data-flow dependent code, using the

termination-sensitive mode to ensure the soundness of slicing (i.e. all code that can

effect execution at the slicing criteria are identified).

4.5 Evaluation

We evaluated whether our translations (Sec. 4.2) and bitwise branching (Sec. 3.2) enabled

tools to verify termination and LTL properties of decompiled binaries. The example* pro-

grams are taken from real bugs in GCC optimizations [6, 7, 144] (see Apx. A.3).



62

Table 4.1: Termination of Lifted Binaries, with and without DARKSEA translations.

Raw MCSEMA DARKSEA transl.

A
P

R
O

V
E

C
PA

C
H

E
C

K
E

R

K
IT

T
E

L

2L
S

U
LT

IM
A

T
E

U
LT

IM
A

T
E

B
W

B

A
P

R
O

V
E

C
PA

C
H

E
C

K
E

R

K
IT

T
E

L

2L
S

U
LT

IM
A

T
E

U
LT

IM
A

T
E

B
W

B

4 (Satisfied) - - - - - - - - - - 18 18
j (Crashed) - 18 - - 3 - - - - - - -
M (Out of Memory) - - - - - 3 - - - - - -
T (Timeout) - - 18 - 15 15 - 18 18 - - -
?(Unknown) 18 - - 18 - - 18 - - 18 - -

4.5.1 Termination of lifted binaries

As discussed in Sec. 4.2, there are several termination provers that support bitvector pro-

grams. We thus applied those termination provers to today’s lifting results on both the

raw output of MCSEMA and then on the output of our translation. We used a standard

termination benchmark (i.e. 18 small, but challenging programs in literature selected from

the SV-COMP termination-crafted benchmark). As discussed in Sec. 4.2, lifted code

is more complicated than its corresponding source (e.g. >10k vs 533 LOC in total). Al-

though today’s termination provers can verify the source of these programs, they struggle

to analyze the corresponding code lifted from the programs’ binaries, as seen in the Raw

MCSEMA columns in Table 4.1.

We devoted genuine effort to overcome small hurdles but, fundamentally, without

the DARKSEA translations, tools struggled for the following reasons:

• APROVE: Errors in conversion from LLVM IR to the internal representation.



63

Table 4.2: Details for termination verification of vanilla MCSEMA binary lifting.

APROVE CPACHECKER KITTEL 2LS ULTIMATE DARKSEA

Benchmark Expected Time Result Time Result Time Result Time Result Time Result Time Result

Singapore-2_gccO0.mcsema.cbe.c 4 8.28s ? 2.04s j 0.06s j 0.17s ? 900.43s T 900.36s T
aaron2-2_gccO0.mcsema.cbe.c 4 5.48s ? 2.13s j 0.06s j 0.17s ? 900.37s T 900.43s T
Singapore_plus_gccO0.mcsema.cbe.c 4 4.13s ? 2.58s j 0.06s j 0.17s ? 900.45s T 900.56s T
Mysore-1_gccO0.mcsema.cbe.c 4 3.77s ? 1.98s j 0.05s j 0.16s ? 900.35s T 900.39s T
Parallel_gccO0.mcsema.cbe.c 4 3.01s ? 2.12s j 0.06s j 0.15s ? 900.38s T 900.33s T
Pure2Phase-1_gccO0.mcsema.cbe.c 4 8.60s ? 2.50s j 0.05s j 0.16s ? 900.38s T 900.44s T
Thun-1_gccO0.mcsema.cbe.c 4 3.55s ? 2.41s j 0.05s j 0.15s ? 900.44s T 900.42s T
easy2-2_gccO0.mcsema.cbe.c 4 2.72s ? 2.22s j 0.05s j 0.16s ? 589.64s j 760.59s M
aaron3-2_gccO0.mcsema.cbe.c 4 9.82s ? 2.44s j 0.06s j 0.20s ? 900.41s T 900.47s T
Pure3Phase-2_gccO0.mcsema.cbe.c 4 5.85s ? 2.54s j 0.06s j 0.22s ? 900.40s T 900.43s T
easy_debug_gccO0.mcsema.cbe.c 4 3.69s ? 2.28s j 0.06s j 0.19s ? 900.40s T 902.27s T
Mysore-2_gccO0.mcsema.cbe.c 4 7.70s ? 2.03s j 0.06s j 0.17s ? 900.43s T 900.49s T
easy1_gccO0.mcsema.cbe.c 4 2.92s ? 2.24s j 0.05s j 0.16s ? 785.05s j 802.15s M
aaron2-1_gccO0.mcsema.cbe.c 4 9.27s ? 2.15s j 0.05s j 0.16s ? 900.31s T 900.37s T
easy2-1_gccO0.mcsema.cbe.c 4 2.60s ? 1.83s j 0.02s j 0.11s ? 566.99s j 870.64s M
Thun-2_gccO0.mcsema.cbe.c 4 5.91s ? 2.41s j 0.03s j 0.16s ? 900.36s T 900.45s T
Pure2Phase-2_gccO0.mcsema.cbe.c 4 4.57s ? 1.90s j 0.02s j 0.13s ? 900.38s T 900.35s T
aaron3-1_gccO0.mcsema.cbe.c 4 46.87s ? 1.91s j 0.03s j 0.13s ? 900.42s T 900.44s T

• KITTEL: Parsing (from C to KITTEL’s format via LLVM bitcode with

LLVM2KITTEL) succeeded, but then KITTEL silently hung until timeout.

• CPACHECKER: Crashes on all benchmarks, while parsing system headers.

• ULTIMATE: Crashes on 3 benchmarks, due to inconsistent type exceptions.

Table 4.1 also shows the verification results of those termination provers when applied to

DARKSEA’s translated output (second set of columns).

Table 4.2 and Table 4.3 show the details of applying termination verifiers to MC-

SEMA output and the output after DARKSEA’s translations, respectively.

In sum, the results show that our translations benefit both CPACHECKER and UL-

TIMATE (which already have sophisticated parsers), reducing crashes in analyzing lifted

code. As highlighted in green, DARKSEA translations enabled ULTIMATE to prove termi-

nation on all of the 18 lifted programs, as compared to ULTIMATE timing out on 15 of the

programs without DARKSEA’s translations.



64

Table 4.3: Details for termination verification of DARKSEA translated lifted binaries.

APROVE CPACHECKER KITTEL 2LS ULTIMATE DARKSEA

Benchmark Expected Time Result Time Result Time Result Time Result Time Result Time Result

Parallel_gccO0.simplify.cbe.c.instr.c 4 1.85s ? 900.51s T 0.01s j 0.12s ? 8.14s 4 7.27s 4

Thun-1_gccO0.simplify.cbe.c.instr.c 4 1.63s ? 900.55s T 0.01s j 0.15s ? 9.68s 4 9.95s 4

aaron2-1_gccO0.simplify.cbe.c.instr.c 4 1.43s ? 900.48s T 0.02s j 0.12s ? 7.91s 4 10.32s 4

Pure3Phase-2_gccO0.simplify.cbe.c.instr.c 4 1.86s ? 900.43s T 0.02s j 0.12s ? 8.34s 4 9.44s 4

Mysore-2_gccO0.simplify.cbe.c.instr.c 4 1.40s ? 900.38s T 0.02s j 0.15s ? 7.03s 4 10.25s 4

easy1_gccO0.simplify.cbe.c.instr.c 4 1.92s ? 900.29s T 0.02s j 0.11s ? 6.47s 4 7.79s 4

Pure2Phase-1_gccO0.simplify.cbe.c.instr.c 4 1.58s ? 900.35s T 0.02s j 0.12s ? 7.19s 4 8.00s 4

aaron3-2_gccO0.simplify.cbe.c.instr.c 4 1.88s ? 900.40s T 0.02s j 0.12s ? 7.22s 4 7.54s 4

easy2-1_gccO0.simplify.cbe.c.instr.c 4 1.63s ? 900.44s T 0.01s j 0.12s ? 6.73s 4 6.81s 4

aaron3-1_gccO0.simplify.cbe.c.instr.c 4 1.46s ? 900.45s T 0.02s j 0.14s ? 8.09s 4 12.30s 4

Pure2Phase-2_gccO0.simplify.cbe.c.instr.c 4 1.87s ? 900.48s T 0.02s j 0.09s ? 8.09s 4 6.96s 4

easy2-2_gccO0.simplify.cbe.c.instr.c 4 1.79s ? 900.47s T 0.02s j 0.09s ? 8.36s 4 6.40s 4

Mysore-1_gccO0.simplify.cbe.c.instr.c 4 1.95s ? 900.41s T 0.01s j 0.10s ? 6.55s 4 8.63s 4

aaron2-2_gccO0.simplify.cbe.c.instr.c 4 1.48s ? 900.55s T 0.01s j 0.11s ? 8.19s 4 8.87s 4

easy_debug_gccO0.simplify.cbe.c.instr.c 4 1.52s ? 900.54s T 0.02s j 0.10s ? 8.16s 4 9.27s 4

Thun-2_gccO0.simplify.cbe.c.instr.c 4 1.88s ? 900.55s T 0.02s j 0.10s ? 7.02s 4 7.71s 4

Singapore_plus_gccO0.simplify.cbe.c.instr.c 4 1.83s ? 900.56s T 0.01s j 0.15s ? 6.96s 4 6.95s 4

Singapore-2_gccO0.simplify.cbe.c.instr.c 4 1.45s ? 900.51s T 0.02s j 0.10s ? 7.05s 4 7.68s 4

4.5.2 LTL of lifted binaries

We finally evaluate the effectiveness of DARKSEA in proving LTL properties of 8 lifted

binaries. Each benchmark has two corresponding lifted programs: the raw output of MC-

SEMA and its simplified version by our FABE translation. In Table 4.4 we report the LTL

property and expected verification result of each benchmark, as well as the verification time

and result of ULTIMATE and DARKSEA on them . Some examples are termination proper-

ties (i.e. Fp), some are reachability properties (i.e. Gp) and some are more expressive LTL

properties such as G(p ⇒ Fq). For each benchmark, we lifted both correct and incorrect

binary, for which the LTL property �(error = 0) (indicating that the error is unreachable)

holds and does not hold, respectively. Green cells use slightly different settings (enabled

SBE, there are various setting strategies in ULTIMATE framework). DARKSEA’s transla-

tions eliminate unsoundness/crashed results that come from applying ULTIMATE directly

to MCSEMA IR.

A more detailed version is shown in Table 4.5, comparing the performance of UL-

TIMATE versus DARKSEA, when applied first to vanilla MCSEMA IR, and then applied

to DARKSEA’s translated IR. The experimental result shows that our translations signif-



65

Table 4.4: ULTIMATE vs. DARKSEA on lifted programs with LTL properties.

ULTIMATE DARKSEA

Benchmark Property Exp. Time Result Time Result

01-exsec2.s.c ♦(�x = 1) 4 4.45s j 11.23s 4

01-exsec2.s.f.c.c ♦(�x 6= 1) 7 6.31s j 10.36s 7

SEVPA_gccO0.s.c �(x > 0⇒ ♦y = 0) 4 6.31s j 22.92s 4

SEVPA_gccO0.s.f.c �(x > 0⇒ ♦y = 2) 7 5.16s ? 14.92s 7

acqrel.simplify.s.c �(x = 0⇒ ♦y = 0) 4 5.17s j 9.00s 4

acqrel.simplify.s.f.c.c �(x = 0⇒ ♦y = 1) 7 6.06s j 17.60s 7

exsec2.simplify.s.c �♦x = 1 4 4.92s j 5.60s 4

exsec2.simplify.s.f.c.c �♦x 6= 1 7 4.55s j 6.28s 7

icantly eliminate all crashes and possibly unsound results occurring in the verification of

the original lifted code. The unsoundness came from the fact that ULTIMATE detected

possible memory errors in the code snippet setting the run-time environment up in those

programs, thus considering the programs to be infeasible with respect to the LTL properties

and assuming that they always hold. DARKSEA inherits such behavior from ULTIMATE.

Moreover, these results on the simplified lifted code highlight the effectiveness of our bit-

wise branching technique, which helps DARKSEA to prove the LTL properties of all 17

benchmarks correctly while ULTIMATE can only prove 6 of them. The possible memory

errors were eliminated when our translation flattened the emulation state.

In summary, we have shown that DARKSEA can verify reachability, termination,

and LTL properties of lifted binaries. To our knowledge, DARKSEA is the first to do so.



66

Table 4.5: Details for LTL lifted binary benchmarks, using vanilla MCSEMA versus
DARKSEA’s translated IR and vanilla ULTIMATE versus DARKSEA’s bitwise-branching
(Section 3.2). Gray cells are unsound, green cells use slightly different settings (enabled
SBE).

Vanilla MCSEMA IR DARKSEA’s translated IR

ULTIMATE DARKSEA ULTIMATE DARKSEA

Benchmark Property Exp. Time Result Time Result Time Result Time Result

01-exsec2.s.c ♦(�x = 1) 4 4.45s j 4.56s j 11.01s 4 11.23s 4

01-exsec2.s.f.c.c ♦(�x 6= 1) 7 6.31s j 5.79s j 9.21s ? 10.36s 7

SEVPA_gccO0.s.c �(x > 0⇒ ♦y = 0) 4 6.31s j 5.93s j 11.17s ? 22.92s 4

SEVPA_gccO0.s.f.c �(x > 0⇒ ♦y = 2) 7 5.16s ? 5.25s ? 35.46s ? 14.92s 7

acqrel.simplify.s.c �(x = 0⇒ ♦y = 0) 4 5.17s j 5.38s j 10.66s 4 9.00s 4

acqrel.simplify.s.f.c.c �(x = 0⇒ ♦y = 1) 7 6.06s j 5.48s j 21.12s ? 17.60s 7

example1_fea.s.c �error = 0 7 13.06s 4 13.44s 4 6.96s 7 6.25s 7

example1_sea.s.c �error = 0 4 11.22s 4 11.11s 4 12.02s 4 8.51s 4

example2_fea.s.c �error = 0 7 12.26s 4 13.54s 4 10.99s ? 12.66s 7

example2_sea.s.c �error = 0 4 14.24s 4 14.15s 4 11.75s ? 8.94s 4

example3_fea.s.c �error = 0 7 10.47s 4 12.02s 4 8.51s ? 8.34s 7

example3_sea.s.c �error = 0 4 11.11s 4 11.36s 4 8.70s ? 6.67s 4

exsec2.simplify.s.c �♦x = 1 4 4.92s j 4.96s j 6.38s 4 5.60s 4

exsec2.simplify.s.f.c.c �♦x 6= 1 7 4.55s j 5.22s j 7.85s 7 6.28s 7

nondet_gccO0.s.c �x > 0 7 4.57s j 4.92s j 10.99s ? 10.59s 7

simple3_gccO0.s.c ♦p = 1 4 4.97s j 5.82s j 91.22s ? 15.87s 4

simple3_gccO0.s.f.c ♦p = 2 7 4.96s j 4.87s j 80.77s ? 20.85s 7



67

Chapter 5

Temporal Verification of Polynomial Programs

In this Chapter we now focus on temporal verification of polynomial programs, another

class of non-linear programs and, specifically, focus on verifying so-called branching-time

temporal properties. As we will see, the techniques we develop have a bigger impact on

branch-time than linear-time temporal properties.

Branching-time logics such as Computation Tree Logic (CTL) [44] are well-known

in the literature and are of practical interest for expressing a variety of temporal program

properties. CTL mixes the ability to express what must happen across all paths in the

future, with what must happen for some path in the future with a focus on choices made

along the way. The ability to express the existence of paths is useful, e.g., for verifying

the ability of a system to take actions to reach a good state and, increasingly, in verifying

autonomous agents [173, 64]. This ability to express branching makes CTL verification of

infinite-state programs, in some ways, more challenging than LTL. Linear temporal logic

specifies program properties over a single program path one at a time, and it quantifies

over all program paths. Branching time logic describes properties over multiple program

branches at the same time, therefore the typical LTL strategy of over-approximating one

path is not always helpful, because we need to consider its effects for other paths. We thus

need strategies that tackle both the positive and negative branches at the same time.

In recent years, numerous techniques [53, 50, 25, 48, 156, 163] and tools such as

T2 [47] and FUNCTION [72] have been developed for statically verifying CTL properties

of programs. Such state-of-the-art CTL verification tools perform well on programs and

properties involving linear integer arithmetics (LIA), e.g., updating variables with LIA ex-

pressions, branch conditions in LIA, and proving LIA properties. While having a strong



68

performance for LIA programs and properties, these tools have limited support for pro-

grams with non-linear arithmetics (NLA). In our experiments, the CTL verification tool

FUNCTION, for example, would return unknowns on programs with NLA properties,

even simple ones such as x2 > 49. On some cases, when facing NLA programs or prop-

erties, the T2 CTL verification tool becomes unsound and reports proofs even for incorrect

programs, making it difficult to trust its results.

NLA properties are difficult to analyze, partially because existing analyses often

rely on SAT/SMT solvers, which still have limited support for NLA, or they rely on im-

precise convex abstraction domains to represent the non-convex semantics of NLA (e.g.,

the octagon abstract domain would likely overapproximate, x2 > 49, which involves two

distinct regions x > 7 ∨ x < −7, as −7 ≤ x ≤ 7). However, despite their difficulties,

NLA properties are important and arise in many scientific, engineering, and safety- and

security-critical applications.

In general, very few works, even non-CTL program analysis, have good treatment

for NLA properties (e.g., Ultimate [159], the popular verification suite and winner of sev-

eral recent annual software verification competitions (SV-COMP) would time out when

analyzing programs containing simple NLA branch conditions such as x2 > 49). While

the benchmarks used in SV-COMP are very comprehensive, none of them focus on NLA

until the recent submission of the NLA-Digbench benchmarks in 2020 containing 27 pro-

grams with nonlinear properties, which to the best of our knowledge, cannot be thoroughly

analyzed by any existing verification tools.

In this chapter, we present a rewriting approach to transform existing programs

with NLA properties and expressions into equivalent programs containing only linear ex-

pressions. We developed a tool, DRNLA, which takes as input a program containing arith-

metics that cannot be analyzed by an existing CTL verification tool and returns another that

can be. Thus, our work allows us to apply existing LIA analyses to effectively reason about



69

Case TrimPos

Case ExpandNeg

Case TrimNeg

Case ExpandPosb

bpos

bneg

Figure 5.1: Cases layout for bpos of b and bneg of ¬b.

NLA programs and properties. We focus on polynomials but the approach also generalizes

to other complex numerical arithmetics. Specifically, we propose a new technique for au-

tomatically discovering LIA alternatives to NLA expressions found in boolean conditions.

Thus, our technique can be used as a preprocessing phase to enable CTL tools to handle

programs with NLA expressions, when previously they were limited to LIA programs.

Our overall approach begins with a new way to integrate static and dynamic anal-

ysis, which we call dual rewriting. We analyze a given boolean NLA expression b in a

branch condition or loop guard and iteratively synthesize a boolean combination of LIA

expressions that are equivalent replacements for the NLA expression in that program con-

text. The key idea is to simultaneously synthesize LIA candidates for both the positive side

of b and the negative side of b at the same time, constructing bpos and bneg respectively. We

use dynamic analysis to infer candidate guesses for these condition pairs, and then static

validation to determine if they are correct. If not, there are four possible cases depending

on how bpos overlaps b and how bneg overlaps ¬b depicted in Figure 5.1.

In those cases, bpos may need to be expanded or trimmed, and same for bneg, we then

describe a way for static validation to generate a counterexample that can then be used to

conjunctively or disjunctively (as the case may be) refine bpos or bneg.

While dual rewriting is sound (thanks to the static validation), it normally would not

converge quickly because validation only emits a single concrete counterexample as a snap-

shot at the error location at a time. We next introduce DYGENERALIZE, a static/dynamic

method for generalizing a single counterexample. We employ an SMT solver to generate



70

many states at the counterexample’s error location that share the same error path condition

with the counterexample. We then use dynamic analysis to learn linear conditions over

these snapshots to refine bpos or bneg.

We next discuss how our static validation is performed via reachability. We in-

troduce a transformation that takes a program and a candidate pair (bpos, bneg) and, at the

location of b in the original program, constructs a four-way conditional and four possible

error states, one for each way in which the candidate pair could be too strong/weak. Conse-

quently, if a safety/reachability verifier (eg Ultimate [159] or CPAchecker [152]) discovers

a path to an error, that error path will indicate (i) which of the four cases holds, (ii) the input

conditions that lead to a state witnessing the case. Note that this transformation preserves

the program context, which is important to effectively generate LIA pairs (bpos, bneg) that

may exploit context-specific invariants.

We implemented the rewriting technique in a new tool DRNLA that analyzes pro-

grams and emits a mapping from the NLA expressions in a program to equivalent LIA

expression replacements. DRNLA is written in Python and OCaml and built on top of

CIL, Z3, DIG [129] (for dynamic learning) and Ultimate [159] (for static validation). We

evaluate DRNLA using three benchmarks consisting of 92 NLA programs with CTL prop-

erties. Our results show that the existing tools Function and T2 perform poorly with these

benchmarks: Function returns unknown for every program while T2 proves every program

(including incorrect ones). However, with the help of DRNLA, these tools (especially T2)

perform much better and were able to (dis)prove up to 50% more programs. Moreover, the

run time of DRNLA is negligible, making it an ideal add-on to existing CTL analyses.

Source code of DRNLA is publicly available on GitHub. 1

1https://github.com/cyruliu/drnla



71

5.1 Overview Through A Motivating Example

We now dissect our approach through an example, considering two non-linear programs

in Figure 5.2, the non-linear loop conditions in these programs are adapted from the non-

linear loop invariants in cohencu.c, a linear program found in the SV-COMP non-linear

benchmarks2. We have also adapted the programs for CTL verification by adding atomic

propositions over the variable p and a CTL property EF(p = 0) ∧ EF(p = 1). The

CTL property states that from the start state there is at least one execution that leads to a

state where p = 0 holds, and also from the start state there is at least one execution that

leads to a state where p = 1 holds. Assuming precondition c <= k holds initially, the

CTL property holds for the left program. The temporal verification requires non-linear

reasoning to determine that the loop terminates, thus leading to the p = 0 state, as well

as to determine the feasibility of at least one loop iteration in order to lead to the p = 1

state. On the other hand, the CTL property does not hold for the right program. In order

to validate or invalidate the property, non-linear reasoning is required to discover the loop

invariant z*z - 12*y - 6*z + 12 == 0 (thus the loop condition is equivalent to c

<= k) and determines that the assignment of c - k into p at Line 8 is reachable only

when c > k (i.e., after the loop terminates). As a result, p is always greater than 0, thus

the conjunct EF(p = 0) is not valid from the initial state and the overall property does not

hold.

The loop conditions in the two programs are non-linear polynomials, which is prob-

lematic for typical static temporal verification tools that have largely focused on linear

conditions. For example, when applying the T2 [33] verifier to this example, it is unsound

and incorrectly claims that the property is valid for the second example. Meanwhile, the

FuncTion abstract interpreter [72] promptly reports “unknown” for both examples.
2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/

nla-digbench/cohencu.c

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/nla-digbench/cohencu.c
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/blob/main/c/nla-digbench/cohencu.c


72

1 int y=1, z=6, c=0, p=2;
2 int k=*;
3 while (z*z - 12y - 6z + 12 + c

<= k):
4 y = y + z;
5 z = z + 6;
6 c = c + 1;
7 p = 1;
8 p = 0;
9 return 0;

Valid: EF(p = 0) ∧ EF(p = 1)

1 int y=1, z=6, c=0, p=2;
2 int k=*;
3 while (z*z - 12y - 6z + 12 + c

<= k):
4 y = y + z;
5 z = z + 6;
6 c = c + 1;
7 p = 1;
8 p = c-k;
9 return 0;

Invalid: EF(p = 0) ∧ EF(p = 1)

Figure 5.2: Nonlinear programs with valid and invalid CTL properties.

Our goal is to enable such existing CTL verification tools to reason about such non-

linear programs. To that end, our strategy is to try to discover equivalent linear expressions

that can be used to replace NLA expressions as a pre-processing step, enabling one to apply

existing tools to this broader class of problems.

Learning linear conditions. As discussed earlier, static verification tools struggle with

NLA reasoning and, thus, cannot be directly used to analyze them. However, a variety

of works in recent years have shown that dynamic analysis can learn non-linear program

behaviors by analyzing concrete executions and inferring correlations. This has been done

for invariants [129, 132, 128, 171], termination [108], separation logic [111], etc. Many

such works combine dynamic learning to find candidate invariants/rank-functions/etc., with

static validation to check sufficiency. Although this hybrid strategy means that static tools

are used to do some nonlinear reasoning, it is only for the purpose of validation, not for the

harder problem of inference/search. We exploit this general strategy in this chapter, but aim

now at the specific problem of synthesizing equivalent LIA alternatives to NLA conditions,

which would be beneficial for further inferring ranking functions in existing verification

tools.

The key idea of our procedure is to identify NLA boolean conditions (and chal-



73

lenging linear conditions) and for each such condition b, to simultaneously synthesize two

linear conditions bpos and bneg, the former reflecting the conditions under which b holds and

the latter reflecting the conditions under which ¬b holds. Our algorithm (Sec. 5.2) aims for

these conditions to be exact (i.e., these conditions will neither be an over-approximation

nor an under-approximation), since branching-time verification requires that we reason pre-

cisely about branching. Accumulating these conditions together enables us to explore from

both directions until we have exactly captured both truth values of b. In the above exam-

ple, b is the loop guard z*z - 12y - 6z + 12 + c <= k and naturally ¬b is its

negation.

Step 1. Initial guess for bpos and bneg. This can be done through dynamic analysis by

simply executing the program on random inputs and instrumenting the program to capture

the values of variables y,z,c,k inside the loop and, separately, capture the values of

those variables after the loop. The first set is examples where b holds and the second where

¬b holds.

bpos; k; y; z; c; p bneg; k; y; z; c; p

294; 18487; 474; 78; 1
271; 9919; 348; 57; 1
26; 217; 54; 8; 1
296; 8587; 324; 53; 1
...

22; 1657; 144; 23; 1
11; 469; 78; 12; 1
21; 1519; 138; 22; 1
0; 7; 12; 1; 1
...

Figure 5.3: Random input snapshots for bpos and bneg.

Using off-the-shelf learning procedures [129, 132] we can infer candidate invariants

for these two program locations which will be our initial guesses for bpos and bneg, with the

caveat that they are only sound for the random inputs considered in Figure 5.3. After in-

strumenting the program as described above, the DIG tool [129, 132] learns many possible



74

candidate invariants as follows:

For bpos : {2 ≥ p,−p ≤ −1, 0 = −6 ∗ c+ z − 6,−p− z ≤ −8, 0 ≥ −c, 0 ≥ c− k}

For bneg : {0 ≥ −c+ p, 0 ≥ −k, 0 = −6 ∗ k + z − 12, 0 = p− 1, 0 = c− k − 1}

Due to the nature of dynamic analysis which derives conditions that hold at the program

locations of interest w.r.t just the snapshots at those locations, the above guesses for bpos and

bneg contain many irrelevant conditions to the expected condition b and ¬b. For example,

they have loop invariants at the locations (such as 0 = −6 ∗ c+ z− 6 in bpos) or conditions

specific to the given snapshots (such as 0 = −6 ∗ k + z − 12 in bneg). However, bpos and

bneg also have conditions like 0 ≥ c − k and 0 = c − k − 1 which are close to the desired

result b ≡ c ≤ k and ¬b ≡ c > k, respectively. Since the condition b and its negation ¬b

always contradict each other, we should only keep conditions in the guesses bpos and bneg

which also contradict the conditions in the other group. Such conditions can be found via

the unsatisfiable core of
∧

(bpos ∪ bneg), which are {0 ≥ c− k, 0 = c− k − 1} in the form

of a set of conjuncts. We then just consider conditions in bpos and bneg which are also in the

unsatisfiable core. This leads us to the first guess pair:

bpos ≡ 0 ≥ c− k bneg ≡ 0 = c− k − 1

Step 2. Validating the pair (bpos, bneg). The next step is to validate whether bpos ⇔ b

and bneg ⇔ ¬b. If we got lucky and it holds we are done. Otherwise, there are four possible

cases to consider as depicted in the following diagram:

Case TrimPos

Case ExpandNeg

Case TrimNeg

Case ExpandPosb

bpos

bneg

In the diagram, the pink area reflects the goal condition to match. Our guess for the positive



75

side (grey box bpos) could be incorrect in two possible ways: In case TrimPos it includes

executions where ¬b holds and must be trimmed down, and in case ExpandPos it does

not include all executions where b does hold. Dually, our guess for the negative side (grey

box bneg) could be incorrect in two possible ways: In case TrimNeg it includes executions

where b holds and must be trimmed down, and in case ExpandNeg it does not include all

executions where ¬b does hold.

In Section 5.3 we describe a method for static validation through a program trans-

formation that maintains the context in which b occurs and emits counterexamples that

indicate which trim/expand positive/negative case needs to be refined next. When the val-

idation returns “safe”, bneg is the negation of bpos. When attempting to validate our first

guess bpos, bneg for the running example, we may find a counterexample consisting of the

following valuation of variables c = 0, k = −2, p = 2, y = 1, z = 6. For these valua-

tions, the original negated condition ¬b ≡ z*z - 12y - 6z + 12 + c > k is true

because 36 − 12 − 36 + 12 + 0 > −2, yet our approximation of this negated condition

bneg ≡ 0 = c - k - 1 is false because 0 6= 1. This case is ExpandNeg: we must

increase the size of bneg so that it is true for this state. The counterexamples returned by

Section 5.3 are next used to refine bpos and bneg, as we will discuss in a moment. The

overall algorithm is depicted in the diagram in Fig. 5.4. So far we have discussed how

the input program progresses to the initial guess (in light blue) and how static validation

yields a state σ that is one of four possible counterexamples (in dark blue). Below we

will discuss the next gray box, used to generate a new expression bcex that can be used to

conjunctively/disjunctively amend bpos or bneg, as the case may be.

Step 3. Dynamic Generalization of Counterexamples. A single-state counterexam-

ple is not enough to enable a refinement procedure to be tractable. In Section 5.4 we discuss

a dynamic analysis procedure that goes beyond a single-state model of a counterexample

and instead generates many models and then learns an expression bcex from them. In this



76

Validation counterexample cases:

Dual Rewriting — Overall Refinement

[[      ]] ! = true

[[      ]] ! = false

[[          ]] ! = true

[[          ]] ! = false

[[              ]] ! = false

[[              ]] ! = true

[[              ]] ! = false

[[              ]] ! = true

Candidate equivalent
LIA expressions

bpos bneg
Dynamic

Analysis
Static Validation

(Section 5)

∧

∧

∧

∧

Conjunctive or

Disjunctive update

Random

Inputs &

unSatCore

Safe
Return

b

¬b
b

¬b

Dynamic 

Generalization of 

Counterexamples 

(Section 6)

Unsafe

∃ cex σ.
∨

(Case ExpandPos)

(Case TrimNeg)

(Case ExpandNeg)

(Case TrimPos)

bpos bneg
if b

then s1

else s2

bneg

bpos

bpos
bneg

Counterexample
Expression

bcex

Figure 5.4: Overall flow of the Dual Rewriting algorithm.

way, bcex captures more of the way in which bpos or bneg must be amended than would be

by a single state. For example, the validation for the program above failed and found that

bneg ≡ 0=c-k-1. While this single condition could be helpful it is rather a restrictive case

being an equality. Our procedure instead generates many models of the counterexample

and then uses DIG to learn an expression capturing those models. After some filtration via

the UNSATcore, we obtain bcex ≡ 0 ≥ p+ k ∧ 0 = p− 2 ∧ 0 = c.

We next need to disjunctively combine this bcex with bneg (because we were in the

ExpandNeg case). However, a direct logical disjunction bneg ∨ bcex does not always work

well because bcex is still a bit too concrete and specific to this counterexample. By using

the convex hull, however, we can generalize the current bneg to be weaker enough to also

include bcex. We therefore attempt to compute the convex hull [21] of the disjunction which,

in this case, yields 0 + k − c ≤ −1. We now have our second guess:

bpos ≡ 0 ≥ c− k, bneg ≡ k − c ≤ −1

So we return to the validation phase and, at this point, validation does not find any coun-

terexamples so these conditions are precise and are returned. Since these conditions are



77

equivalent to the original polynomial condition in the program, replacing the polynomial

with simply c − k ≤ 0 leads to a linear program with exactly the same behavior as the

original program.

Verifying CTL Properties with the DRNLA Tool. We implemented the above tech-

nique in a new tool called DRNLA. We discuss its implementation in Sec. 5.6. The upshot

is that DRNLA can be used as a pre-processing step to transform an NLA program into an

LIA program. We next evaluated whether (i) DRNLA was able to generate LIA expressions

for NLA expressions and (ii) whether doing so enabled existing tools to verify CTL prop-

erties of NLA programs. Since no NLA CTL benchmarks exist we adapted the DynamiTe

NLA termination/nontermination benchmarks to have CTL properties (CTLNLABench-

DYNAMITE) and we adapted other known CTL benchmarks [50] to include NLA expres-

sions. Below is an example of such program:

1 int a=0, s=1, t=1, k=*, c=0, p=0, x=5;

2 while (t*t - 4*s + 2*t + 1 + c <= k):

3 a = a + 1;

4 t = t + 2;

5 s = s + t;

6 c = c + 1;

7 while (x >= 0):

8 if (*) x--;

9 p = 1;

Property: AF(EF(p > 0))

This program involves an NLA loop on Line 2. The CTL property says that across all paths,

eventually a state is reached, from which point, there is at least one path to reach a state

where p is positive.

We report our experimental results in Sec. 5.7.



78

5.2 Dual Refinement

We now describe the details of our dual refinement procedure. For a given NLA

branch expression b at some location ` of the program, in a statement of the form

if (b`) then s1 else s2, dual refinement attempts to synthesize an equivalent boolean

LIA expression, using a combination of static and dynamic analysis.

A key enabling insight is that, rather than synthesizing a single expression alter-

native to b, we can better explore both the positive and negative sides of the state space

(i.e., where b holds and where it does not hold) by synthesize two expressions bpos and

bneg, respectively. To specify program locations for each expression b, we use snapshots

in the following program transformation, wherein for each b`, one snapshot snap`,pos is

added immediately inside the positive ‘then’ branch and snap`,neg immediately inside the

negative ‘else’ branch:

Definition 5.2.1. [Instrumentation for Snapshots] For a given program P , instrumentation

is the following transformation:

P snap[`] =̂


if b` then s else s′  




if b` then snap`,pos; s

else snap`,neg; s′







After this transformation, dynamic analysis tool DIG can be used to synthesize both

branches from executing traces. With this in mind, the refinement strategy is described in

the algorithm in Fig. 5.5.

More specifically, we aim to such that for any state σi reachable at this location

L, [[bpos]]σi ⇔ [[b]]σi and [[bneg]]σi ⇔ [[¬b]]σi. We update bpos and bneg with the newly

dynamically learned invariants that are presented in formula(σ), as following. (s1 are

statements in b branch, s2 are statements in ¬b branch.)



79

1 procedure DYREFINE(b, bpos, bneg):
2 loop
3 case TrimPos: ∃σ. [[bpos]]σ ∧ ¬[[b]]σ → bpos := bpos ∧ ¬formula(σ)
4 case ExpandPos: ∃σ. ¬[[bpos]]σ ∧ [[b]]σ → bpos := bpos ∨ formula(σ)
5 case TrimNeg: ∃σ. [[bneg]]σ ∧ [[b]]σ → bneg := bneg ∧ ¬formula(σ)
6 case ExpandNeg: ∃σ. ¬[[bneg]]σ ∧ ¬[[b]]σ→ bneg := bneg ∨ formula(σ)
7 else → return (bpos, bneg)

Figure 5.5: Algorithm DYREFINE: Overall strategy synthesize an alternative to boolean
condition b by refining a pair of conditions bpos, bneg, so that bpos captures the conditions
where b holds and bneg captures the conditions where ¬b holds.

• bpos := learn(execute("assume b; s1"));

• bneg := learn(execute("assume ¬b; s2"));

As we are iteratively refining a pair of conditions bpos, bneg, the algorithm iteratively

checks to see whether one of four possible cases still holds. The cases and amendments

needed for each are also represented pictorially in Fig. 5.6.

bi

bipos

bineg

bi

bipos

bineg

bi

bipos

bineg

bi

bipos

bineg

b

bpos

bneg

ExpandPosTrimPos ExpandNegTrimNeg

Figure 5.6: Depictions of how candidate LIA conditions bpos and bneg align with states
where b holds (in pink) and what actions are needed to remedy.

• TrimPos: In this case bpos captures some states for which b does not hold. For

example, if b ≡ x2 > 4 and bpos ≡ x > 1 there is at least one state such as x = 2,

where bpos holds, but b does not. In this case, we need to reduce the size of bpos, as

depicted in the first case of Fig. 5.6, so that it does not go beyond the pink b area.



80

This will be accomplished by discovering some new boolean formula subexpression

(Sec. 5.4 we introduce a method for this called DYGENERALIZE) and conjunctively

add it to bpos. For example, if DYGENERALIZE returns 0 ≤ x ≤ 1, then the conjunc-

tion is bpos ≡ 0 ≤ x ≤ 1 ∧ x > 1, which can be simplified to bpos ≡ 0 ≤ x.

• ExpandPos: In this case bpos does not capture all of the states for which b holds.

For example, if b ≡ x > 0 and bpos ≡ x > 5, then there is a state such as x = 2

where b holds, but bpos does not. In this case we need to refine by “expanding” bpos

to include the x = 2 (and possibly other) states. This is depicted with the gray bpos

box expanding to cover more of the pink b area. In order to expand we again find a

formula that represents σ (and ideally other similar states) and add it disjunctively to

bpos.

• ExpandNeg: In this case bneg does not capture all of the states for which ¬b holds.

As depicted in the diagram, we need to enlarge the gray bneg box so that it covers

states that are outside the pink box.

• TrimNeg: In this case bneg captures some states for which ¬b does not hold. Here

we need to shrink the gray bneg box to reduce its overlap with the pink b box.

Since ideally we would like to have an exact linear mapping for b, which means

that the bpos for b and bneg for ¬b should be complemented to each other. One simple

optimization of this procedure is, while trimming the positive, use the same σ to expand

the negative (and similar for the expanding the positive while trimming the negative), as

this could potentially reduce the refinement steps (in the case that it terminates, we will

discuss divergence and termination of the algorithm in Sec. 5.5).

DYREFINE takes as argument initial guesses for bpos, bneg. Any initial guess is sound,

but we use dynamic analysis to learn conditions that are close to b and ¬b, respectively. To



81

this end we use the instrumentation in Definition 5.2.1: for a given b` in the program, we

apply the instrumentation P snap[`], execute the program under random inputs, collect the

sets of states snap`,pos and snap`,neg, and then employ a learning routine learn (Defini-

tion 2.4.1) on each set to obtain conditions bpos, bneg.

While the above algorithm is simple, critical to the practical success of the algorithm

are the strategies needed for many subcomponents of the algorithm. First, the semantics

of condition b depend on its context in the program, what invariants must hold of other

variables, etc. To that end, in Sec. 5.3 we discuss how counterexamples (i.e. σ) can be

obtained that account for the program context, through a static transformation that reduces

the problem to reachability and returns a counterexample from which σ can be derived.

Second, individual counterexamples do not allow the refinement algorithm to make much

progress on each iteration. Therefore in Sec. 5.4 we describe a method of generalizing

counterexamples using dynamic analysis. There are also other details that arise at the

implementation level, such as how to exploit the convex hull when forming the disjunction

in the refinement algorithm. We discuss these issues in the next sections.

Classes of input NLAs and synthesized LIA expressions. On the input side, our im-

plementation does not enforce any specific class of non-linear expressions, apart from what

is expressible in the C input programming language, and what the dynamic and static tools

can support. As discussed in [129], DIG uses dynamic analysis to analyze programs with

polynomial expressions and infer nonlinear equalities and octagonal inequalities. Mean-

while, Ultimate [159] parses input C programs into Boogie programs, and has some support

for reachability of polynomials, a fact that we exploit in our static validation in Section 5.3.

On the output side, as one can see, the DYREFINE algorithm synthesizes Boolean

combinations of LIA equalities/inequalities or, formally:

blia ::= blia ∧ blia′ | blia ∨ blia′ | ¬blia | fLIA(x1, . . . , xn) ≤ 0



82

where variables x1, . . . , xn ∈ Vars and fLIA is a linear integer arithmetic expression over

those variables. The soundness of DYREFINE depends on static validation, so we return

to it at the end of the next section. Another natural question is termination of refinement.

This partially depends on validation (Sec. 5.3) as well as counterexample generalization

(Sec. 5.4), so we return to a discussion of divergence and termination in Sec. 5.5.

5.3 Static Validation Through Reachability

Due to the unsoundness of dynamic analysis, the candidate linear conditions bpos and bneg

of the non-linear conditions b and ¬b, resp., must be validated to be exact w.r.t. their non-

linear versions in the same program context where they occur. Note that b and bpos as

well as ¬b and bneg are not necessarily equivalent in general (where all models of their

variables are considered), but instead it is only necessary for them to be equivalent in the

reachable program states in which b and ¬b are evaluated. For example, the condition

z*z - 12*y - 6*z + 12 + c <= k in the running examples is not equivalent to

its linear version c <= k in general (e.g., when y = 0,z = 0) but they are equivalent in

the program context where the loop invariant z*z - 12*y - 6*z + 12 = 0 holds. In

this section we describe how this validation can be done through a program transformation

that reduces the problem to reachability, and determines the refinement for bpos and bneg

when the validation fails.

We define an approximation mapping m : N → b × b to map a program location

i of a condition bi to a pair of conditions (bipos, b
i
neg) that, respectively, approximate the

conditions bi and ¬bi. We now transform the original program P according to the mapping

m (iterate m) into a program Pvalid[m] by introducing some error locations in it for the

following reason: if the program Pvalid[m] is safe (i.e. no errors in Pvalid[m] are reachable)

then all approximating positive and negative conditions (bipos, b
i
neg) in m are exact. The



83

program transformation is defined as follows:

Pvalid[m] =̂





∀i 7→ (bipos, b
i
neg) ∈ m.

if bi then s else s′  




if biand ¬bipos then goto errori
ExpandPos

elseif biand bineg then goto errori
TrimNeg

elseif ¬biand bipos then goto errori
TrimPos

elseif ¬biand ¬bineg then goto errori
ExpandNeg

elseif bi then s else s′









Intuitively, the above transformation replaces each occurrence of an

if bi then s else s′ with 5-way branching. The final branch involves the normal

control-flow of the program, allowing executions of the original program to also exist in

the transformed program. However, the first four branches test all of the ways in which

bi can be inconsistent with bipos and bineg. If it is possible for an execution of the original

program P to reach location ` in a state where such an inconsistency holds, then there will

be an execution of Pvalid[m] that can reach the corresponding error label for that form of

inconsistency.

Figure 5.7 shows an example of instrumentation for static validation, for nonlinear

expression in line 12, five cases for static validation are introduced as nest branches showed

on the right side, which maps the polynomial on line 12 to the current candidate bpos, bneg.

There will be an execution of this transformed program that enters the branch on Line 4

if ever there is a reachable program state where the polynomial inequality holds, but bpos

does not. In such a circumstance a reachability analysis will emit a counterexample that

reaches errorExpandPos, reflecting that bpos needs to be expanded. The next 3 branches are

similar. If an execution does not fall into one of the first four branches, this does not (yet)



84

1 int y=1, z=6, c=0, p=2;
2 int k=*;
3 while (true):
4

5

6

7

8

9

10

11

12 if(z*z-12y-6z+12+c>k):
13 break;
14 else:
15 y = y + z;
16 z = z + 6;
17 c = c + 1;
18 p = 1;
19 p = 0;
20 return 0;

int y=1, z=6, c=0, p=2;
int k=*;
while(true):
if(z*z-12y-6z+12+c>k && ¬bpos):

errorExpandPos // bpos too small
elsif (z*z-12y-6z+12+c>k && bneg):

errorTrimNeg // bneg too big
elsif (¬(z*z-12y-6z+12+c>k) && bpos):

errorTrimPos // bpos too big
elsif (¬(z*z-12y-6z+12+c>k) && ¬bneg):

errorExpandNeg // bneg too small
if(z*z-12y-6z+12+c>k):

break
else:

y = y + z;
z = z + 6;
c = c + 1;
p = 1;

p = 0;
return 0;

Figure 5.7: Demonstration of instrumentation for static validation.

mean that bpos, bneg are valid: it could, e.g. be that a state at a later loop iteration witnesses

a shortcoming of bpos or bneg. Thus, the fifth branch allows executions to fall through

the check and continue to later program states. If no execution can ever reach any of the

error labels, then bpos and bneg must be accurate, i.e. the soundness condition discussed in

Lemma 5.3.1.

Let us now look at a counterexample to the validity of Pvalid[m] and see that it

indicates how bpos or bneg needs to be amended. Recall that the counterexample is in the

form of a feasible sequence of program statements that lead to the error location, such as



85

the following (for the instrumented program on the right in Fig. 5.7):

cex1 ≡





` 1 : int y=1, z=6, c=0, p=2;

` 2 : int k=*;

` 3 : assume(true);

` 8 : assume(!(z*z - 12y - 6z + 12 + c <= k));

` 8 : assume(!(0 >= c-k));

` 10 : assume(!(1 = c-k);

` 11 : errorExpandNeg

(5.1)

This is a feasible program path. Consider, for example, the case where k = −2, c = 0

initially and, in that case both b and bneg (c − k − 1 = 0) are false. Therefore branch

condition (¬b && ¬bneg) holds so error location errorExpandNeg can be reached and the

above program path cex1 is output by a reachability verifier, with the error location indi-

cating that bneg must be expanded.

Effectiveness of static validation. We began from the premise that static validation tech-

niques do not cope well with polynomials, yet we now find ourselves using them for exactly

that purpose in Pvalid[m]. There are a few reasons why this is not a sleight of hand. First,

we do not ask a static tool to discover a linear replacement for a polynomial but instead

validate one that was obtained through dynamic learning. Second, we do not need to rea-

son perfectly about the polynomials that occur inside the Boolean bi’s in Pvalid[m] above

but instead only need to reason about the Boolean properties of the polynomials. Finally,

as mentioned above, we also do not need to reason perfectly about the polynomials on all

inputs but instead only in the program context (reachable states) where they occur. In Sec-

tion 5.7, we will see that tools such as Ultimate [159] are indeed able to validate Pvalid[m],

despite these instances of polynomial Boolean expressions. In formal, if the program is



86

shown to be safe we have the following guarantees.

Lemma 5.3.1 (Transformation Correctness). If all errors in P check[m] are unreachable

then

∀i 7→ (bipos, b
i
neg) ∈ m.∀σ ∈ preds(bi). [[bipos]]σ = [[bi]]σ ∧ [[bineg]]σ = [[¬bi]]σ

Proof. Consider a mapping i 7→ (bipos, b
i
neg) ∈ m. Because errori

ExpandPos, errori
TrimPos,

errori
ExpandNeg, errori

TrimNeg are unreachable, their corresponding conditional condi-

tions are unsatisfiable under the program context in which bi could be evaluated (to either

true or false). Therefore,

∀σ ∈ preds(bi).¬([[bi]]σ ∧ ¬[[bipos]]σ) ∧ ¬(¬[[bi]]σ ∧ [[bipos]]σ)

⇔ ∀σ ∈ preds(bi). (¬[[bi]]σ ∨ [[bipos]]σ) ∧ ([[bi]]σ ∨ ¬[[bipos]]σ)

⇔ ∀σ ∈ preds(bi). ([[bi]]σ =⇒ [[bipos]]σ) ∧ ([[bipos]]σ =⇒ [[bi]]σ)

⇔ ∀σ ∈ preds(bi). [[bi]]σ = [[bipos]]σ

Similarly, we can prove that ∀σ ∈ preds(bi). [[¬bi]]σ = [[bineg]]σ.

5.4 Dynamic Generalization of Counterexamples

A counterexample to the static validation (Pvalid[m] in the previous section), including con-

crete witness values for the variables (a model), demonstrates the insufficiency of the cur-

rent candidate linear approximating conditions bpos and bneg. As seen above, this coun-

terexample from Pvalid[m] corresponds to a path in the original program P leading to a

place where the truth value of some bi is inconsistent with bipos or bineg. Already the coun-

terexample model could be used to assist in refining bpos and bneg. Unfortunately, a single

such model would only refine bipos or bineg by a single data point, which would not lead to a



87

tractable overall algorithm. In infinite domains, the refinement process may diverge if we

refine with only concrete error snapshots.

In this section we introduce DYGENERALIZE (shown in Fig. 5.8 and discussed be-

low), a technique to employ dynamic learning to discover a broader condition denoted bcex

that is learned from many counterexample models, and allows our overall DYREFINE to

take more significant steps toward completion. DYGENERALIZE is called with the current

bpos/bneg needed amendment, the current counterexample path cex and the Expand/Trim

direction of amendment. There are then three steps:

Step 1. DYGENERALIZE first generates many concrete snapshots (e.g. a

parameter value of 1,000) at the error location from the input counterexample.

This can be seen on Line 2 in Fig. 5.8. Our procedure DYGENERALIZE trans-

forms a counterexample path into an SSA logical formula using standard techniques,
y z c k p

1 6 0 -2 2

1 6 0 -3 2

1 6 0 -4 2

1 6 0 -5 2

1 6 0 -6 2

...

denoted path2formula(cex). From such a formula, we can har-

vest distinct error snapshots by iteratively invoking an SMT solver

to get a model at the error location and then adding constraints to

prevent the solver from generating the same model in future it-

erations. For example, the table on the right shows some error

snapshots extracted from counterexample cex1 (Eqn. 5.1).

Step 2. Next, DYGENERALIZE employs dynamic analysis to learn an error condi-

tion bcex from the collected error snapshots (Line 3 in Fig. 5.8). From the data points in

the above right table, dynamic analysis can learn the condition bcex ≡ 0 ≥ p + k ∧ 0 =

p− 2 ∧ 0 = c.

Step 3. Depending on the refinement action determined from the counterexample, a

simpler and more useful condition can be extracted from the error condition. In particular,

if the counterexample indicates that an expansion refinement is needed, the current approx-

imating condition bcur should be expanded with only new conditions which cover program



88

1 procedure DYGENERALIZE(bcur, cex, direction):
2 S := getModels(path2formula(cex), iters=1000);
3 bcex := learn(S);
4 if (direction == Expand):
5 match UnsatCorePair(bcur, bcex) with
6 | Some(busc) ⇒ return busc
7 | None ⇒ return bcex
8 else:
9 return bcex

Figure 5.8: Algorithm DYGENERALIZE: Generalizing a single counterexample cex be-
yond a single model, to a formula that captures many states that could reach the same
counterexample location.

states not covered by bcur. Because such new conditions in bcex contradict bcur, they can be

identified from the unsatisfiable core of bcur ∧ bcex, as seen on Line 5. The exact way the

unsatisfiable core is utilized is described below.

Definition 5.4.1 (Unsatisfiable core pairs). Given ϕ, ϕ1 and ϕ2 in CNF as a set of clauses,

and assuming a UnsatCore(ϕ) that returns an unsatisfiable subset of the set of clauses

in ϕ, if one exists, then UnsatCorePair, given ϕ1 and ϕ2, is defined as the set of clauses

in UnsatCore(ϕ1 ∪ ϕ2) ∩ ϕ2.

1 procedure ∨̂(b, b′):
2 match convexHull(b ∨ b′) with
3 | Some(b′′) → return b′′

4 | None → return b ∨ b′
5

6 procedure DYREFINE′(b, bpos, bneg):
7 loop
8 case TrimPos: ∃cex. bpos ∧ ¬b → bpos:= bpos ∧ DYGENERALIZE(bpos,cex,Trim)
9 case ExpandPos:∃cex. ¬bpos ∧ b → bpos:= bpos∨̂DYGENERALIZE(bpos,cex,Expand)

10 case TrimNeg: ∃cex. bneg ∧ b → bneg:= bneg ∧ ¬DYGENERALIZE(bneg,cex,Trim)
11 case ExpandNeg:∃cex. ¬bneg ∧ ¬b → bneg:= bneg∨̂DYGENERALIZE(bneg,cex,Expand)
12 else ⇒ return (bpos, bneg)

Figure 5.9: Algorithm DYREFINE′: A revised version of DYREFINE from Fig. 5.5 that now
employs dynamic counterexample generalization, and uses the convex hull for disjunction.

Putting it all together. We now describe a revised DYREFINE′, shown in Fig. 5.9



89

that employs this DYGENERALIZE. First, we use a counterexample path cex (rather than

a single model σ in Fig. 5.5), which is passed to DYGENERALIZE, along with the current

condition to be modified, and the appropriate Expand/Trim directive. In the Expand case,

the condition returned by DYGENERALIZE is used to form a disjunction with the current

condition bcur. Although it could be used immediately, we can further approximate that

disjunction with its convex hull, denoted ∨̂ and defined in Fig. 5.9, for a faster converging

refinement. For instance, in the running example, consider the refinement when the coun-

terexample determines that the current condition bneg ≡ c − k = 1 can be expanded with

the condition bcex ≡ 0 ≥ p + k ∧ 0 = p − 2 ∧ 0 = c. It contains the variable p which is

irrelevant to the result. Fortunately, the convex hull of this disjunction is exactly c > k so

no further refinement steps are needed (otherwise we need more refinement steps to reason

about p).

5.5 Convergence and Termination of DRNLA

The output of our algorithm is a Boolean combination of linear integer arithmetic equal-

ities/inequalities (blia as defined in Sec. 5.2). However, expressing arbitrary polynomial

equalities as a blia is not always feasible, much less whether our algorithm would always

discover one. Nonetheless, as seen in Sec. 5.7, our algorithm frequently does discover

such blia conditions, and we now discuss why, identify fragments where termination is

guaranteed, and identify sources of divergence.

Termination due to interval analysis. Perhaps surprisingly, we often do discover

a blia equivalent of the original NLA. The main reason is that we only need to capture

the Boolean aspects of the polynomial, which amounts to knowing when the polynomial

will be above or below a certain bound. Consider the diagram to the right. In this

single-variable example of some polynomial f(x) and Boolean property f(x) < c, an



90

c
f(x)

t
1

t
2

t
3

t
4

t
5

equivalent blia need only capture when f(x) is above or below c. That is, the blia simply

needs to distinguish the blue values of x (when f(x) ≥ c) from the red values of x (when

f(x) < c), and this can be achieved with the expressions:

bpos ≡ (t1 < x ∧ x < t2) ∨ (t3 < x ∧ x < t4) ∨ (t5 < x),

bneg ≡ (x ≤ t1) ∨ (t2 ≤ x ∧ x ≤ t3) ∨ (t4 ≤ x ∧ x ≤ t5).

These blia expressions are essentially interval constraints [42]. Note that there is a potential

application here toward compiler optimization, if the calculation of such intervals is more

efficient than calculating the polynomial, though we leave this to future work. A simple

example of the interval phenomenon is an inequality such as x2 > 49, where an equiv-

alent blia is a simple disjunction of intervals. Beyond a single variable, the two-variable

inequality x2 + y2 < 4 has a blia alternative of (−2 < y ∧ y < 2) ∧ (−2 < x ∧ x < 2).

Termination in other special cases. In some program contexts, polynomial ex-

pressions may always evaluate to a constant amount. For example, if an NLA such as

a2 − b2 + y + 5 > 0 occurs inside a loop and an invariant of the loop is that y = 0∧ a = b,

then the NLA will always be equivalent to 5 > 0. Slightly more generally, in some pro-

gram contexts, polynomial expressions may always be directly equivalent to an LIA equal-

ity/inequality. For example, in a loop where a = −b is an invariant, the polynomial in-

equality (a + b)2 + x > 0 is exactly equal to x > 0. An example is a program in Sec. 5.1,



91

where a portion of the polynomial is equivalent to 0 due to loop invariants.

Divergence. Finally, there are cases where divergence is inevitable. First, as noted,

there may be polynomials that simply cannot be expressed as a blia. Second, practically

speaking, our dynamic learning in DIG may not be able to learn a sufficiently precise

LIA expression for us to use as a building block. Finally, in some cases the dynamic

generalization may cause us to “over-shoot,” generalizing a counterexample to create a

bcex that encompasses an important interval stopping point, e.g. we may generalize data

points x = 25 and x = 50 to bcex = x > 20, despite there being an important interval at

x = 51. This could be a future work, which aims to detect those circumstances and attempt

a binary search strategy to iteratively reduce the generalization ranges. Practically, to avoid

divergence, our implementation currently forces termination after a fixed number of steps

(18 iterations) and returns the partially synthesized bpos and bneg.

5.6 DRNLA Implementation

We implemented dual rewriting refinement in a new tool called DRNLA, written in a com-

bination of Python and OCaml. DRNLA uses DIG [129] for dynamic learning and Ulti-

mate [159] as a black-box reachability verifier for static validation. The algorithm takes an

input program P with NLA expressions and emits a mapping m : L → (e, e′) mapping

expression locations in P to a pair of LIA conditions bpos, bneg that can replace those NLAs.

An overview of DRNLA is shown in Fig. 5.10. DRNLA’s main driver is imple-

mented in Python. During the refinement loop, DRNLA calls DIG and Ultimate iter-

atively, and DRNLA uses OCaml/CIL to construct the P snap instrumentation for DIG

and P check (for validation) instrumentation for Ultimate. Ultimate returns counterexam-

ple paths, which we parse and convert to SSA, so that we can query Z3 to generate many

models. We then use DIG to learn from those models a new expression bexp which we



92

DRNLA
Dual Rewriting

Refinement Algorithm

Z3 / CVC4 DIG (Learning)Ultimate (Valid.)

b
cex

cex path

m
o

d
e
ls

C 
NLA 

program 

CTL Property

Instr.

Pcheck

Mapping m:

NLA expressions
→

LIA replacements

Instr.

Psnap

Existing

CTL 

Verifier

LIA
Program

ϕ

Figure 5.10: DRNLA implementation overview.

parse, add to bpos/bneg, and reincorporate into the current map m to be validated again.

The refinement loop can be bounded and if iteration reaches the bound before obtaining an

exact solution, DRNLA terminates and return approximated result.

Our transformations are implemented with OCaml/CIL. For static validation with

P check, given a candidate mapping m, we transform source program into four cases with

nested if-else statements (as mentioned in precious section 5.3), and inject error

labels in each case. For dynamic learning P snap identifies NLA expressions b and cre-

ates labels so that learning can discriminate states where b held (following into the then

branch) from states where ¬b held (following into the else branch).

The procedure provided by DIG is used in two circumstances: first to infer initial

guess for bpos/bneg and second during the generalization of counterexamples. The learning

procedure actually returns a list of candidate invariants and not all of them are useful. In

fact, we have two lists: one for bpos and one for bneg. We start by removing identical in-

variants which are useless in discriminating bpos from bneg. We then prune away irrelevant

invariants using an UNSATcore procedure to return the minimal sets of candidate invari-

ants. Our dynamic analysis instrumentation also has to take care that the programs do not

run forever, so we also instrument loop bound, when the refinement steps exceed the bound,

DRNLA terminates with current results.



93

5.7 Evaluation

We evaluated whether DRNLA (i) was able to synthesize equivalent LIA Boolean con-

ditions from NLA conditions and (ii) whether these synthesized LIA expressions, when

replaced in the program, enable existing tools to verify the CTL properties of these previ-

ously unsolvable problems.

All experiments described below were run on an Amazon AWS cloud instance with

4 virtual 2.4GHz CPUs, 16GB of memory, and Ubuntu Linux. DRNLA and all external

tools (e.g., Ultimate, T2, Function) use a 900s timeout. We run T2 and FUNCTION with

default parameters (though we did try to use various parameters such as abstract domains

in T2 but did not find ones that improve the performance of the tools).

5.7.1 Nonlinear CTL Benchmarks

To our knowledge, there are no existing benchmark suites consisting of CTL properties for

programs with NLA expressions. We thus sought to create such benchmarks using two

complementary strategies: extending NLA benchmarks to include CTL properties and ex-

tending CTL benchmarks to include NLAs. We then also crafted another set of benchmarks

with NLAs that trigger more refinement steps in DRNLA.

CTLNLABench-DYNAMITE We first use the NLA benchmarks in the Dynamite termi-

nation work [108]. These programs implement mathematical functions such as intdiv,

gcd, lcm, and power sum. They contain NLA loop invariants and nontrivial structures

such as nested loops. We instrument these programs to include CTL properties. For each

program with n NLA loop invariants, we create n variants of the program, where each has

an NLA loop invariant and a new variable p that is updated in existing loops in such a way

that the variable is either 0 or 1 when the program exits. Thus all programs have the CTL



94

property EF (p = 0) ∧ EF (p = 1). Next, we create another n variants of the program

with the same NLA loop invariants but the variable p is updated in such a way that the CTL

property does not hold. Tab. 5.1 shows the 56 created programs: the CTL property is valid

for programs with suffix-T and invalid for those with suffix-F.

CTLNLABench-PLDI13 We also created 26 benchmarks with CTL properties

from [50] and shown in the top part of Tab. 5.2. For each program, we insert a sim-

ple terminating loop that contains NLA expressions. The goal of this instrumentation is

to force the CTL tool to reason about the behaviors of these NLA expressions to deter-

mine the termination of the loop. In addition, we select 5 random programs from these

benchmarks (shown in the bottom part of Tab. 5.2. For these programs, we insert several

NLA loops (taken from CTLNLABench-DYNAMITE) to increase the difficulty and also

diversity of NLA expressions, we would like to use these programs to test the robustness of

DRNLAregarding different types of NLA expressions presented for their CTL verification.

CTLNLABench-Handcraft We also create a set of 10 more challenging benchmarks

for DRNLA, shown in Tab. 5.3. These are created with combinations of NLA expressions,

which result in higher degrees and are used as conditional or loop guards. The LIA equiva-

lent expressions of these NLA expressions are also more complex and involve disjunctions

of linear constraints.

In total, we have 92 CTL benchmarks with NLA and CTL properties

(56 from CTLNLABench-DYNAMITE, 26 from CTLNLABench-PLDI13, and 10

CTLNLABench-Handcraft). Our modifications to the original benchmarks are relatively

simple (e.g., simple CTL property used in CTLNLABench-DYNAMITE), yet sufficiently

strong to illustrate the limitations of existing CTL work in dealing with NLA programs as

shown in Section 5.7.2.



95

5.7.2 DRNLA Synthesizing Results

Tables 5.1, 5.2 and 5.3 show the results of applying DRNLA to CTLNLABench-

DYNAMITE, CTLNLABench-PLDI13 and CTLNLABench-Handcraft benchmarks, re-

spectively. We also report programs that DrNLA cannot handle (marked as ?, e.g., because

they use double/unsigned variable types or because they may contain NLA expressions in

assignments). We report whether the final result was validated by Ultimate (4) or else

needed manual validation (≈). Typically refinement is completed in around 10 minutes,

with most time spent in Ultimate. We also report the number of refinement iterations that

were needed (It.).

As can be seen, for most programs, DRNLA was able to synthesize correct LIA

replacements and verified by Ultimate. Even in the cases that need manual valida-

tion, the synthesized LIA expressions are also correct, and as will be shown in Sec-

tion 5.7.3, can help existing CTL tools. Moreover, for CTLNLABench-DYNAMITE and

CTLNLABench-PLDI13, DRNLA requires few refinement iterations to synthesize LIA

expressions. However, DRNLA requires more refinement iterations for CTLNLABench-

Handcraft benchmarks as the LIA expressions for these programs are much more compli-

cated (shown next).

The following are a few representative examples of the benchmark programs’ NLA

expressions and our generated LIA expressions (Tab. 5.4 and Tab. 5.5). The complete

output is given in given in Apx. A.4, Apx. A.5 and Apx. A.6.

In the case of bresenham1-T.c, Ultimate was able to validate the final bpos /bneg

pair. In the other cases, Ultimate timed out, so we verified them manually (like all ≈

examples).

As is easy to see, the output LIA expressions are far simpler than the input

NLA expressions. The following is an example of one of our handcrafted benchmarks



96

Table 5.1: DRNLA’s rewrite results for CTLNLABench-DYNAMITE

Benchmark Res T(s) It. Benchmark Res T(s) It.

bresenham1-F.c 4 210.1 2 fermat1-F.c ≈ TO 0
bresenham1-T.c 4 204.2 2 fermat1-T.c ≈ TO 0
cohencu2-F.c ≈ 517.5 1 geo1-F.c 4 131.0 1
cohencu2-T.c ≈ 473.7 1 geo1-T.c 4 130.6 1
cohencu3-F.c ≈ 621.8 1 geo2-F.c 4 122.5 1
cohencu3-T.c ≈ 621.4 1 geo2-T.c 4 134.7 1
cohencu4-F.c ≈ 780.3 2 geo3-F.c 4 171.1 1
cohencu4-T.c ≈ 773.9 2 geo3-T.c 4 163.5 1
cohencu5-F.c 4 179.4 2 hard-F.c ? 7.9 0
cohencu5-T.c 4 177.4 2 hard-T.c ? 7.4 0
cohencu7-F.c ≈ 194.9 2 hard2-F.c ? 0.9 0
cohencu7-T.c ≈ 667.5 2 hard2-T.c ? 0.8 0
dijkstra2-F.c ≈ 687.5 2 prod4br-F.c ≈ 239.0 5
dijkstra2-T.c ≈ 686.0 2 prod4br-T.c ≈ 159.3 4
dijkstra3-F.c ≈ 628.6 1 prodbin-F.c ≈ 654.5 2
dijkstra3-T.c ≈ 627.5 1 prodbin-T.c ≈ 619.6 1
dijkstra4-F.c ≈ 629.7 1 ps2-F.c 4 29.0 1
dijkstra4-T.c ≈ 629.1 1 ps2-T.c 4 53.4 2
dijkstra5-F.c ≈ 630.8 1 ps3-F.c 4 62.8 2
dijkstra5-T.c ≈ 613.9 1 ps3-T.c 4 44.9 1
divbin1-F.c ? 1.2 0 ps4-F.c 4 59.8 2
divbin1-T.c ? 1.3 0 ps4-T.c 4 58.1 2
egcd-F.c ≈ TO 0 ps5-F.c 4 30.4 1
egcd-T.c ≈ TO 0 ps5-T.c 4 41.3 1
egcd2-F.c ≈ 696.0 1 ps6-F.c 4 60.3 2
egcd2-T.c ≈ 681.8 1 ps6-T.c 4 68.6 2
egcd3-F.c ≈ TO 8 sqrt1-F.c 4 117.0 2
egcd3-T.c ≈ TO 8 sqrt1-T.c 4 116.3 2

if-cubic-F.c. The source contained `6 : 8 = x3 and we synthesized the following:

bpos : (((4 ≥ p+ x) ∧ (0 ≥ p− x) ∧ (0 ≥ −p+ x)

∧(−p− x ≤ −4)) ∨ (2 ≥ p ∧ (0 ≥ −p+ x) ∧ (−p− x ≤ −4)))

bneg : ((0 == p− 2 ∧ 1 ≥ p− x∧!((2 ≥ p

∧(0 ≥ −p+ x) ∧ (−p− x ≤ −4)))) ∨ (0 ≥ x))



97

Table 5.2: DRNLA’s rewrite results for CTLNLABench-PLDI13

Benchmark Res T(s) It. Benchmark Res T(s) It.

afagp-F.c 4 103.9 2 afp-F.c 4 163.8 2
afagp-T.c 4 74.8 1 afp-T.c 4 166.8 2
afefp-T.c 4 179.8 2 agafp-F.c 4 65.7 1
afegp-F.c 4 239.7 2 agafp-T.c 4 36.3 1
afegp-T.c 4 177.8 2 efafp-T.c 4 231.1 2
neg-afagp-F.c 4 289.1 2 neg-afp-F.c 4 164.4 2
neg-afagp-T.c 4 287.2 2 neg-afp-T.c 4 160.9 2
neg-afefp-F.c 4 225.2 2 neg-efafp-F.c 4 243.0 2
neg-afegp-F.c 4 226.0 2 neg-egafp-F.c 4 282.2 2
neg-afegp-T.c 4 217.4 2 neg-egafp-T.c 4 313.3 2
neg-egimpafp-T.c 4 251.4 2

afagp-T.c 4 160.3 1 neg-afefp-F.c 4 233.2 1
afefp-T.c 4 312.1 2 neg-afp-F.c 4 68.2 2
agafp-T.c 4 24.4 1

Table 5.3: DRNLA’s rewrite results for handcrafted benchmarks

Benchmark Res T(s) It. Benchmark Res T(s) It.

if-cubic-F.c 4 51.5 3 square-loop-F.c 4 383.6 12
if-cubic-T.c 4 51.3 3 square-loop-T.c 4 233.3 7
if-F.c 4 78.8 6 while-cubic-F.c 4 87.0 7
if-T.c 4 76.5 6 while-cubic-T.c 4 84.4 7

while-F.c 4 190.4 6
while-T.c 4 189.6 6

Table 5.4: Example output of DRNLA on CTLNLABench-DYNAMITE

Benchmark Source NLA Output bpos Output bneg

bresenham1-T.c `36 : 2Y x− 2X2y + 2Y − v + c ≤ k 0 ≥ c− k, k − c ≤ −1
cohencu2-T.c `32 : 3n

2 + 3n+ 1 ≤ k 0 ≥ y − k, k − y ≤ −1
egcd2-T.c `33 : c ≥ xq + ys 0 ≥ b− c, −b+ c ≤ −1

In short, DRNLA is indeed able to synthesize LIA alternatives for NLA expressions across

a variety of benchmarks.



98

Table 5.5: Example output of DRNLA on CTLNLABench-PLDI13

Benchmark Source NLA Output bpos Output bneg

afefp-T.c `19 : t2 − 4s+ 2t+ 1 + c ≤ k 0 ≥ a− k k − a ≤ −1
afagp-T.c `21 : ¬(xz − x− y + 1 + c < k) 0 ≥ −c+ k c− k ≤ −1
neg-afp-F.c `18 : z2 − 12y − 6z + 12 + c ≤ k 0 ≥ n− k k − n ≤ −1

5.7.3 Enabling CTL Verification of NLA Programs

Tabs. 5.6, 5.7, and 5.8 show how DRNLA improves the two state of the art CTL analyzers

T2 [47] and Function [72]. In these tables, in the Improve T2 (Function) group, columns

Res under T2 (Function) and DRNLA show the result of running T2 (Function) on the orig-

inal program and on the DRNLA’s generated program, respectively. The symbol Xmeans

proved (expected for benchmarks with T-suffix), X means disproved (expected for bench-

marks with F-suffix), those with E means incorrect result (e.g., EX is unsound as it proves

an invalid property), j means crash, ? means unknown, - means DRNLA was not able

to rewrite NLA expressions. Results with green background indicate that with the help of

DRNLA, the CTL drnla was able to analyze the program correctly.

CTLNLABench-DYNAMITE As can be seen from Tab. 5.6, T2 does not support pro-

grams with NLA, and worse, it appears to be unsound by proving everything, including

invalid properties. However, with DRNLA’s help, T2 was able correctly to analyze 26/56

programs (green background). For the other 30/56 programs that DRNLA failed to help:

DRNLA was not able to rewrite 14 programs (due to NLAs in assignments, Double/Un-

signed variable types, etc.); T2 crashed on 3 of DRNLA’s generated programs (arguably

still better than the unsound results that T2 had for these programs); and T2 still gives incor-

rect results for 13 programs. Function failed to run for all but two programs, cohencu5-T

and sqrt1-F, in which it did run but gave unsound results by proving invalid properties.

With DRNLA’s help, Function was able to correctly analyze 12/56 programs. The running



99

Table 5.6: DRNLA’s improvements for CTLNLABench-DYNAMITE

Improve T2 Improve FUNCTION Improve T2 Improve FUNCTION
T2 DRNLA FT DRNLA T2 DRNLA FT DRNLA

Benchmark Res T(s) Res T(s) Res T(s) Res T(s) Benchmark Res T(s) Res T(s) Res T(s) Res T(s)

bresenham1-F.c EX 0.7 j 1.7 ? 5.9 ? 10.9 fermat1-F.c EX 2.1 - - ? 1.3 - -
bresenham1-T.c X 0.7 X 0.7 ? 0.6 ? 2.7 fermat1-T.c X 1.9 - - ? 0.4 - -
cohencu2-F.c EX 0.7 X 0.8 ? 4.4 ? 0.2 geo1-F.c EX 1.3 X 1.4 ? 0.7 ? 1.8
cohencu2-T.c X 0.7 X 0.8 ? 0.1 ? 0.7 geo1-T.c X 1.4 X 1.6 ? 0.1 X 0.6
cohencu3-F.c EX 0.7 X 0.8 ? 0.1 ? 0.7 geo2-F.c EX 1.5 X 1.6 ? 0.7 ? 0.5
cohencu3-T.c X 0.7 X 0.8 ? 0.1 ? 0.7 geo2-T.c X 1.5 X 1.4 ? 0.1 X 0.6
cohencu4-F.c EX 0.7 X 0.7 ? 0.0 ? 0.0 geo3-F.c EX 1.5 X 1.4 ? 0.8 ? 4.6
cohencu4-T.c X 0.7 X 0.7 ? 0.2 X 0.7 geo3-T.c X 1.5 X 1.4 ? 0.1 X 0.7
cohencu5-F.c EX 0.7 X 0.7 EX 1.1 ? 0.5 hard-F.c EX 1.5 - - ? 1.6 - -
cohencu5-T.c X 0.7 X 0.7 ? 0.2 X 1.0 hard-T.c X 1.6 - - ? 5.3 - -
cohencu7-F.c EX 0.7 j 1.7 ? 1.5 ? 0.5 hard2-F.c EX 1.4 - - ? 0.0 - -
cohencu7-T.c X 0.8 X 0.7 ? 0.4 X 1.3 hard2-T.c X 1.5 - - ? 0.0 - -
dijkstra2-F.c EX 0.8 EX 0.8 ? 0.0 ? 0.0 prod4br-F.c EX 2.0 - - ? 2.0 - -
dijkstra2-T.c X 0.8 X 0.7 ? 670.1 ? TO prod4br-T.c j 2.4 - - ? 0.5 - -
dijkstra3-F.c EX 0.8 EX 0.8 ? TO ? TO prodbin-F.c EX 1.3 - - ? 0.5 - -
dijkstra3-T.c j 1.7 j 1.7 ? 642.9 ? TO prodbin-T.c X 1.1 - - ? 0.2 - -
dijkstra4-F.c EX 0.8 j 1.8 ? TO ? TO ps2-F.c EX 1.0 X 1.0 ? 0.6 ? 1.5
dijkstra4-T.c X 0.8 X 0.7 ? 603.8 ? TO ps2-T.c X 0.6 X 0.7 ? 0.1 X 0.5
dijkstra5-F.c EX 0.8 EX 0.8 ? TO ? TO ps3-F.c EX 0.7 X 0.7 ? 0.6 ? 1.5
dijkstra5-T.c X 0.8 X 0.7 ? 738.5 ? TO ps3-T.c X 0.7 X 1.1 ? 0.1 X 0.5
divbin1-F.c ? 0.2 - - ? 0.0 - - ps4-F.c EX 0.7 X 0.7 ? 0.6 ? 1.5
divbin1-T.c ? 0.2 - - ? 0.0 - - ps4-T.c X 0.7 X 0.7 ? 0.1 X 0.5
egcd-F.c EX 0.8 - - ? 0.2 - - ps5-F.c EX 0.7 X 0.7 ? 0.6 ? 1.5
egcd-T.c j 1.8 - - ? 0.2 - - ps5-T.c X 0.9 X 0.9 ? 0.1 X 0.5
egcd2-F.c EX 1.9 EX 1.4 ? 3.1 ? 6.3 ps6-F.c EX 1.0 X 0.9 ? 0.6 ? 1.5
egcd2-T.c X 1.3 X 1.6 ? 1.7 ? 11.9 ps6-T.c X 1.0 X 1.0 ? 0.1 X 0.5
egcd3-F.c EX 1.5 - - ? 0.0 - - sqrt1-F.c EX 0.8 X 0.8 EX 0.8 ? 2.3
egcd3-T.c X 1.8 - - ? 18.9 - - sqrt1-T.c X 0.7 X 0.6 ? 0.1 X 0.8

times of T2 and Function with the original programs and the DRNLA’s generated programs

are similar (less than a second in most cases). This is expected as DRNLA’s generated pro-

grams are simpler than the original ones, and thus should not cost extra analysis time.

Table 5.7: DRNLA’s improvements for CTLNLABench-PLDI13

Improve T2 Improve FUNCTION Improve T2 Improve FUNCTION
T2 DRNLA FT DRNLA T2 DRNLA FT DRNLA

Benchmark Res T(s) Res T(s) Res T(s) Res T(s) Benchmark Res T(s) Res T(s) Res T(s) Res T(s)

afagp-F.c X 1.6 X 1.9 ? 0.0 ? 0.0 afp-F.c X 1.0 X 1.1 ? 0.0 EX 0.1
afagp-T.c EX 1.2 X 1.2 ? 0.0 ? 0.2 afp-T.c X 0.9 X 1.2 X 0.0 X 0.1
afefp-T.c EX 16.6 X 25.9 ? 0.0 ? 0.0 agafp-F.c X 2.2 X 1.6 ? 0.1 ? 0.6
afegp-F.c X 1.8 X 1.8 ? 0.1 ? 0.0 agafp-T.c EX 1.3 X 1.0 ? 0.0 ? 1.0
afegp-T.c X 1.7 X 1.8 ? 0.1 ? 0.2 efafp-T.c X 3.4 X 2.1 ? 0.2 ? 1.5
neg-afagp-F.c X 1.4 X 1.5 EX 0.1 ? 0.2 neg-afp-F.c EX 1.1 X 1.0 ? 0.0 ? 0.1
neg-afagp-T.c X 2.1 X 2.1 X 0.1 ? 0.2 neg-afp-T.c X 1.1 X 1.1 ? 0.0 ? 0.1
neg-afefp-F.c EX 13.3 X 57.1 ? 0.2 ? 0.7 neg-efafp-F.c X 3.8 X 2.4 ? 0.1 ? 0.4
neg-afegp-F.c EX 1.7 EX 1.7 EX 0.1 ? 0.2 neg-egafp-F.c X 2.1 X 1.4 ? 0.0 ? 0.2
neg-afegp-T.c EX 1.6 EX 1.7 X 0.1 ? 0.2 neg-egafp-T.c EX 2.3 EX 1.6 ? 0.0 ? 0.2
neg-egimpafp-T.c EX 2.4 EX 1.7 ? 0.1 ? 0.6

afagp-T.c EX 1.3 EX 1.2 ? 0.0 ? 0.2 neg-afefp-F.c EX 13.2 X 22.3 ? 0.1 ? 0.8
afefp-T.c EX 12.9 X 25.7 ? 0.7 ? 2.4 neg-afp-F.c EX 1.0 X 0.9 ? 0.0 ? 0.1
agafp-T.c EX 1.2 X 0.9 ? 0.0 ? 0.5



100

CTLNLABench-PLDI13 From Tab. 5.7, T2 also has difficulties in analyzing the in-

strumented NLA code and returns unsound results. Similarly, Function does not run on

most programs, and in the few cases that it does, it likely gives unsound results. DRNLA

was able to help T2 with a 10/26 improvement but does not appear to help Function. The

differences in running times are also negligible.

Table 5.8: DRNLA’s improvements for handcrafted benchmarks

Improve T2 Improve FUNCTION Improve T2 Improve FUNCTION
T2 DRNLA FT DRNLA T2 DRNLA FT DRNLA

Benchmark Res T(s) Res T(s) Res T(s) Res T(s) Benchmark Res T(s) Res T(s) Res T(s) Res T(s)

if-cubic-F.c EX 0.9 X 0.7 ? 0.1 ? 0.1 square-loop-F.c X 0.8 EX 0.8 ? 0.0 ? 0.0
if-cubic-T.c X 0.6 X 0.7 ? 0.0 ? 0.0 square-loop-T.c X 0.8 EX 0.9 ? 0.1 ? 3.1
if-F.c EX 0.7 X 0.7 ? 0.0 ? 0.1 while-cubic-F.c EX 0.7 X 0.8 ? 0.0 ? 0.2
if-T.c X 0.7 X 0.7 ? 0.0 ? 0.1 while-cubic-T.c X 0.7 X 0.7 ? 0.0 ? 0.5

while-F.c X 0.9 X 0.9 ? 0.1 ? 0.4
while-T.c X 0.7 X 0.8 ? 0.1 ? 3.2

CTLNLABench-Handcraft From Tab. 5.8, as expected, both T2 and Function have

difficulties and return incorrect results for some programs. Here, DRNLA was not able

to help Function but was able to help T2 with a 60% (6/10) of benchmarks that now can

be verified. However, it appears that DRNLA’s generated square-loop programs with

complex linear constraints confused T2 and caused it to return incorrect results.

In summary, for the NLA benchmarks, T2 and Functions just simply do not sup-

port these NLA programs: T2 does not support NLA and Function fails to run, and in

many cases, they provide unsound results. With the help of DRNLA, T2 can now analyze

26 programs and Function correctly analyzes 12 programs of the 56 SVCOMP bench-

marks. Similarly, for the CTLNLABench-PLDI13 benchmarks, we observe a 10/26 for

T2, but 0/26 FUNCTION (though instead of returning unsound, FUNCTION now returns

unknowns). Moreover, DRNLA’s rewrite does not decrease the quality of the CTL tools,

i.e., never a case when the CTL tool runs worse with DRNLA’s program compared to the

original program. Finally, these improvements come with almost no additional runtime



101

cost (in most cases the analyses took less than a second).



102

Chapter 6

Conclusions

We have arrived at the end of this dissertation. In this chapter, we recap the highlights of

this dissertation and sketch possible extensions in the future.

6.1 Summary

This dissertation presents rewriting theories and tools for temporal verification of nonlinear

programs. Instead of developing analysis techniques that directly reason about nonlinear

program behaviors like bitwise operations and higher order polynomial computations, we

present rewriting methods to approximate these nonlinear behaviors with linear ones, shift-

ing the reasoning burden of existing verification tools back to integer and linear domain, a

space where mature static analysis thrives. We have, respectively, implemented our theories

and have developed our toolchain DARKSEA for linear temporal verification of decompiled

binaries, and DRNLA which combines static and dynamic analysis for branching-time

verification of nonlinear programs. The core contributions of this dissertation can be con-

cluded as following parts.

BWB Chapter 3. We first present our bitwise branching theory BWB, a term rewriting

theory of bitwise operations for linear temporal verification. Two sets of rules rewriting and

weakening rules subsume BWB, covering a wide range of bitwise operations like logic and,

or, bit shifting etc., each rule has certain conditions that operands should satisfy, under these

conditions, a bitvector program can be soundly transformed to a simpler version that is

more friendly (can be effectively verified against temporal properties, note that reachability

and termination can also be specified in temporal formula) for verification tools.



103

We have provided soundness proof of rules in BWB with Z3 SMT scripts and im-

plemented our bitwise branching in program analysis framework ULTIMATE, and it has

been merged to its main repository, at the same time we developed a rich set of bitvector

benchmarks ranging from reachability, termination and LTL verification for better eval-

uation of our approach as well as other verification tools, the benchmark sets have also

been submitted to SV-COMP, a software verification competition repository. In the end,

we performed various experiments on our BWB implementation, comparing our results

with different SMT solvers (Z3, CVC4, MATHSAT, etc.) encompassed in ULTIMATE and

other verification tools, our experimental results show that our BWB theory is effective in

helping existing verification tools verify temporal properties of bitvector programs.

DARKSEA Chapter 4. With bitwise branching implemented in ULTIMATE as a verifi-

cation subroutine, we developed DARKSEA, a complete binary end-to-end binary verifi-

cation toolchain with formal methods, tailored to temporal verification. The majority of

binary analysis with formal methods research work focuses on fine-grained verification

like correctness of instruction recovery, control flow reconstruction, etc., our tool DARK-

SEA works on high-level decompiled binaries, verifying coarse properties like termination

and LTL. We first studied challenges in binary disassembly and lifting, and identified cer-

tain issues like verification of unrelated metadata, nested struct simulating registers, and

stack, that existing verification tools face working on decompiled binaries.

There are no standard representations for decompiled binaries, leaving abundant re-

search space in discussion about what is a good representation of decompiled binary, that

is tied to verification instead of recompilation as most existing works do, we start our work

with binary analysis framework MCSEMA, which lifts disassembly to LLVM intermediate

representation. DARKSEA uses IDA PRO and MCSEMA disassembles and lifts binaries

into LLVM bytecode, then performs a series of simplification passes on lifted LLVM byte-



104

code, the transformation passes target challenges we identified earlier for binary verifica-

tion of decompiled code. With the transformed decompiled IR (which can be disassembled

from LLVM byte code), DARKSEA can map it back to C syntax program, which in the end

can be handled with our bitwise branching strategy. Finally, we compile benchmarks from

SV-COMP and reported GCC bug benchmarks into binaries, our experiment results with

these compiled binaries show that DARKSEA is at the time of writing the first effective

tool in verifying termination and LTL properties of decompiled binaries.

DRNLA Chapter 5. Branching-time properties specify behaviors of programs over time

including the ability to express choices from a given state such as, e.g., whether there is

some choice or whether all choices lead to some intended outcome. Consequently, rea-

soning about conditional branching is crucial to branching-time verification techniques and

when those conditions are beyond the comfort of linear expressions, branching-time tools

report unknown or, worse, unsound results. We introduce a new method of converting pro-

grams with non-linear arithmetic (NLA) into equivalent programs with linear arithmetic

(LIA) via a technique we call dual rewriting. Dual rewriting discovers a linear replace-

ment for an NLA boolean expression b (e.g., as found in conditional branching) through

a combination of dynamic learning and static validation of counterexamples to iteratively

explore and construct linear expressions for both the positive and negative sides of b. The

replacement is a boolean combination of linear expressions that exploits the program con-

text and trades off boolean complexity for NLA complexity but, in doing so, puts more

static verification tools within reach.

We implemented our work in a new tool DRNLA that performs the analysis to

replace NLA conditional expressions with equivalent LIA conditions. DRNLA takes as

input a program containing NLA that cannot be analyzed by an existing verification tool

(e.g., FUNCTION or T2) and returns a transformed equivalent version (in the same program



105

context) that can be reasoned by verification tools. Thus, DRNLA allows us to transform

programs, and apply existing LIA analyses to effectively reason about NLA programs and

properties. At its core, DRNLA relies on a dual analysis that performs both dynamic and

static analysis and learns properties from both positive and negative concrete traces. It

uses dynamic analysis to infer a logical LIA formula representing a convex region which

approximates the potential non-convex region representing the complex property (NLA

expressions). This dynamically inferred LIA formula is likely inaccurate and thus DRNLA

refines it by analyzing whether over- or under-approximation occurs using a static analysis

tool.

We have shown that CTL properties can indeed be verified in programs with non-

linear expressions. Our dual rewriting technique implemented in DRNLA iteratively syn-

thesizes boolean combinations of linear expressions that are equivalent and can be replaced

in the program as a pre-processing step before CTL verification. Although static verifica-

tion tools struggle with many aspects of reasoning about NLA programs, interestingly we

found that they were often useful at validating whether NLA expressions are equivalent to

provided LIA alternatives.

We built the first suite of CTL benchmarks for programs with non-linear expres-

sions, based upon augmenting an existing suite of NLA programs [108] with new CTL

properties and augmenting a known existing suite of linear CTL benchmarks [50] with

NLA conditions. In the end, We use 92 CTL programs with NLA to evaluate whether these

written programs can be more easily verified, showing that our transformed programs en-

able tools such as FUNCTION and T2 to verify branching-time (CTL) properties of more

programs that they could not previously verify.



106

6.2 Future Research

Our works involve a broad range of research domains from low-level systems research to

high-level program transformation, abstraction, and temporal verification, etc., there are

a huge number of problems remained unanswered! In the following, we provide a few

interesting directions for possible future work.

Bitwise branching extension. The bitwise branching theory we present in this disserta-

tion covers the majority bitwise operations, the size of bit matters due to different types of

architectures, in our work bitwise branching is implemented with the assumption of 32-bit

processor, a potential extension is to take care of all possible bit size such as 64-bit, 32-bit,

16-bit, etc. In low-level code like assembly and llvm byte code, variables often have smaller

size of bit defined in one program, resulting in different upper bounds and lower bounds

for the variables, this requires our bitwise branching to make a corresponding adaption to

the variable size, in order to have a more precise approximation for bitvector operations.

On the other hand, we implemented BWB on the source code level (we decompile and

lift binaries to C like high-level programs), instead of implementing bitwise branching on

high level code, perhaps another potential direction worth exploring is to apply bitwise

branching in a low-level code like LLVM bytecode, with more bit size extension and more

coverage on different types of bitvector operations. More approximation rules can be found

and applied, which can potentially transform bitvector programs more precisely while still

maintaining soundness (e.g. if we know a variable is defined with 8-bit size, then its upper

bounds would be 28, we would have a stronger condition than the case we interpret it with

32-bit size that lifted code in high level would be).

Property driven decompilation. As we have discussed in Chapter 4, there are lots of

noises in decompiled code that are irrelevant to verification, we have the final pass to per-



107

form program slicing on our lifted code based on LTL formula, in the future, this char-

acteristic can be exploited further. An intuitive approach is that, we can track property

related information (like path, and variables) that is identified in disassembly, and lifted IR

in lifting, which can help reduce the burden of control flow reconstruction, as we could end

up with sub-graph of the program paths that are only related to our target property being

verified. However, with this approach, instead of slicing the whole lifted program, recon-

structing property-related control flow graph raises a completeness question that how do

we know we have traversed all possible paths? One answer would be finding a proof of all

unions of sub-graphs are a superset of the original control flow graph. On the other side,

decompilation is a process of code discovery in binaries, different disassemblers applying

different algorithms have different accuracy in disassembly, similarly, there are discrepan-

cies in lifting tools [37] that construct IRs from disassembly. What was previously built

is not focused on verification, instead, we could build our own disassembler with open

source tools (e.g. Ramblr) and lifter to construct decompiled IR, in a way that it can be ori-

ented to a format that is formally verified and effective in proof with theorem provers (e.g.

Isabelle/HOL [147, 122]). Combining these two directions, with property-driven control

flow recovery and formally verified lifted IR, we can build an efficient temporal verification

tool on top of them.

Disjunctive invariants. Our work on DRNLA uses dynamic analysis to infer invariants

from concrete program snapshots, it works well when these concrete data are scattered

in a convex geometry region, which means the dynamic results often are in the form of

conjunctions, this is indeed most of the cases that we saw in our benchmarks discussed

in Section 5.7. However, if the snapshots we take at a program location which in fact

is a condition in the form of disjunction, dynamic analysis would fail to find effective

invariants for this set of data. Although our dual rewriting algorithm updates (expand/trim)



108

the approximated condition with disjunctive results from dynamic analysis, it can only

resolve a smaller case of disjunctions, and it can hardly scale. Therefore a more interesting

direction is to design an algorithm that is able to infer/learn disjunctive invariants in general.

The geometry shapes of disjunctive program snapshots are mostly non-convex, a possible

solution is to find a way to decompose them into small groups of data sets, within each

group they form a convex region, which we can use our conventional dynamic analysis to

infer its invariants, and on top it we can find a way to compose all the sub-group results.

With the extension of finding disjunctive invariants in general, DRNLA would be able to

verify a broader range of nonlinear programs comparing what we have achieved.

Temporal verification of distributed ledger. Recently, distributed computing systems

have more practical applications driven by blockchain technology, bringing smart con-

tracts into the distributed ledger, at the same time raising huge concerns about security. A

smart contract itself is a program managing funds automatically on a distributed ledger,

any unintended bug would put any asset in a potential capital loss. Temporal actions are

common in smart contracts e.g. transferring funds to address B from address A in two

days, or sending out asset A as long as address B received funds, etc. Making sure these

temporal behaviors perform as intended is vital before smart contracts are released live on-

chain, since any transaction onchain is immutable, assets loss would be permanent [134].

Works on smart contract specification [157] have been published recently, as well as work

on verification tool for smart contracts [154], our works on temporal verification for more

practical programs can be extended to smart contracts written on distributed systems too.



109

Bibliography

[1] Distributed LTL Model Checking with Hash Compaction | Elsevier Enhanced Reader.

[2] External variable problem. https://github.com/lifting-bits/mcsema/issues/566.

[3] Glitch in jump table identification. https://github.com/lifting-bits/mcsema/

issues/558.

[4] Hex-rays decompiler: Overview. https://www.hex-rays.com/products/decompiler/.

[5] Miss data cross reference due to resetting ida’s analysis flag. https://github.com/lifting-

bits/mcsema/issues/561.

[6] Possible wrong code bug. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43438.

[7] Possible wrong code bug. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952.

[8] Sv-comp collection of verification tasks. https://gitlab.com/sosy-lab/

benchmarking/sv-benchmarks.

[9] Sv-comp termination benchmarks. https://github.com/sosy-lab/sv-benchmarks/

tree/master/c/termination-crafted.

[10] Ultimate’s ltl benchmarks. https://github.com/ultimate-pa/ultimate/tree/dev/

trunk/examples/LTL/.

[11] National Security Agency. Ghidra. https://www.nsa.gov/resources/everyone/

ghidra/.

[12] Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla, and Damiano Zanar-

dini. Termination Analysis of Java Bytecode. In Formal Methods for Open Object-Based Distributed

Systems, volume 5051. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[13] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. 2:117–126, September 1987.

https://github.com/lifting-bits/mcsema/issues/566
https://github.com/lifting-bits/mcsema/issues/558
https://github.com/lifting-bits/mcsema/issues/558
https://www.hex-rays.com/products/decompiler/
https://github.com/lifting-bits/mcsema/issues/561
https://github.com/lifting-bits/mcsema/issues/561
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43438
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42952
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-crafted
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-crafted
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/
https://github.com/ultimate-pa/ultimate/tree/dev/trunk/examples/LTL/
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/


110

[14] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian Dabrowski,

David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos, and Michael Franz. Bin-

rec: dynamic binary lifting and recompilation. In EuroSys, pages 36:1–36:16. ACM, 2020.

[15] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert Bos. An in-depth

analysis of disassembly on full-scale x86/x64 binaries. In 25th {USENIX} Security Symposium

({USENIX} Security 16), pages 583–600, 2016.

[16] AProVE. AProVE: Automated program verification environment, 2020. http://aprove.

informatik.rwth-aachen.de/.

[17] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M.

Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark,

Neel Krishnaswami, and Peter Sewell. Isa semantics for armv8-a, risc-v, and cheri-mips. Proc. ACM

Program. Lang., 3(POPL), January 2019.

[18] Domagoj Babić, Alan J. Hu, Zvonimir Rakamaric, and Byron Cook. Proving termination by diver-

gence. In Fifth IEEE International Conference on Software Engineering and Formal Methods (SEFM

2007), 10-14 September 2007, London, England, UK, pages 93–102. IEEE Computer Society, 2007.

[19] Peter Backeman, Philipp Rummer, and Aleksandar Zeljic. Bit-Vector Interpolation and Quantifier

Elimination by Lazy Reduction. pages 1–10, Austin, TX, October 2018. IEEE.

[20] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executables. In Interna-

tional conference on compiler construction, pages 5–23. Springer, 2004.

[21] C Bradford Barber, David P Dobkin, and Hannu Huhdanpaa. The quickhull algorithm for convex

hulls. ACM Transactions on Mathematical Software (TOMS), 22(4):469–483, 1996.

[22] Jiři Barnat, Luboš Brim, and Petr Ročkai. Towards LTL Model Checking of Unmodified Thread-

Based C & C++ Programs. In NASA Formal Methods, volume 7226, pages 252–266. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012. Series Title: Lecture Notes in Computer Science.

[23] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino. Boogie:

A modular reusable verifier for object-oriented programs. In International Symposium on Formal

Methods for Components and Objects, pages 364–387. Springer, 2005.

http://aprove.informatik.rwth-aachen.de/
http://aprove.informatik.rwth-aachen.de/


111

[24] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K Rustan M Leino. Boogie:

A modular reusable verifier for object-oriented programs. In International Symposium on Formal

Methods for Components and Objects, pages 364–387, 2005.

[25] Tewodros A. Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solving existentially quantified

Horn clauses. volume 8044, pages 869–882, 2013.

[26] Dirk Beyer. Advances in automatic software verification: SV-COMP 2020. In Armin Biere and David

Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems - 26th International

Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part II, volume 12079 of

Lecture Notes in Computer Science, pages 347–367. Springer, 2020.

[27] Dirk Beyer and M Erkan Keremoglu. Cpachecker: A tool for configurable software verification. In

International Conference on Computer Aided Verification, pages 184–190. Springer, 2011.

[28] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements and solutions.

Int. J. Softw. Tools Technol. Transf., 21(1):1–29, 2019.

[29] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, and Xavier Rival. A static analyzer for large safety-critical software. In Proceedings

of the ACM SIGPLAN 2003 conference on Programming language design and implementation, pages

196–207, 2003.

[30] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Ziyad Hanna, Zurab

Khasidashvili, Amit Palti, and Roberto Sebastiani. Encoding RTL Constructs for MathSAT: a Prelim-

inary Report. Electron. Notes Theor. Comput. Sci., 144(2):3–14, 2006.

[31] Aaron R Bradley, Zohar Manna, and Henny B Sipma. Linear ranking with reachability. In Interna-

tional Conference on Computer Aided Verification, pages 491–504. Springer, 2005.

[32] Marc Brockschmidt. T2: Temporal logic prover, 2020. https://github.com/mmjb/T2.

[33] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir Piterman. T2: Temporal

property verification, 2015.

https://github.com/mmjb/T2


112

[34] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. BAP: A binary analysis

platform. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,

USA, July 14-20, 2011. Proceedings, pages 463–469, 2011.

[35] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strichman, and Bryan

Brady. Deciding Bit-Vector Arithmetic with Abstraction. In Tools and Algorithms for the Construction

and Analysis of Systems, volume 4424, pages 358–372. Springer Berlin Heidelberg, 2007.

[36] Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-case

complexity. In 2009 IEEE 31st International Conference on Software Engineering, pages 463–473.

IEEE, 2009.

[37] Chris Casinghino, JT Paasch, Cody Roux, John Altidor, Michael Dixon, and Dustin Jamner. Using

binary analysis frameworks: The case for bap and angr. In NASA Formal Methods Symposium, pages

123–129. Springer, 2019.

[38] Marek Chalupa. mchalupa/dg, January 2021.

[39] Hong-Yi Chen, Cristina David, Daniel Kroening, Peter Schrammel, and Björn Wachter. Synthesising

interprocedural bit-precise termination proofs (T). In ASE, pages 53–64. IEEE Computer Society,

2015.

[40] Hong-Yi Chen, Cristina David, Daniel Kroening, Peter Schrammel, and Björn Wachter. Synthesising

Interprocedural Bit-Precise Termination Proofs (extended version). arXiv:1505.04581 [cs], May 2015.

[41] Hong-Yi Chen, Cristina David, Daniel Kroening, Peter Schrammel, and Björn Wachter. Bit-Precise

Procedure-Modular Termination Analysis. ACM Transactions on Programming Languages and Sys-

tems, 40:1–38, January 2018.

[42] Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. An abstract domain to discover interval

linear equalities. In International Workshop on Verification, Model Checking, and Abstract Interpre-

tation, pages 112–128. Springer, 2010.

[43] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided

abstraction refinement. In International Conference on Computer Aided Verification, pages 154–169.

Springer, 2000.



113

[44] Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Transactions on Programming Languages

and Systems (TOPLAS), 8(2):244–263, 1986.

[45] Byron Cook, Sumit Gulwani, Tal Lev-Ami, Andrey Rybalchenko, and Mooly Sagiv. Proving con-

ditional termination. In Aarti Gupta and Sharad Malik, editors, Computer Aided Verification, 20th

International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, volume 5123

of Lecture Notes in Computer Science, pages 328–340. Springer, 2008.

[46] Byron Cook, Heidy Khlaaf, and Nir Piterman. Faster temporal reasoning for infinite-state programs.

In 2014 Formal Methods in Computer-Aided Design (FMCAD), pages 75–82, Lausanne, Switzerland,

October 2014. IEEE.

[47] Byron Cook, Heidy Khlaaf, and Nir Piterman. On automation of ctl* verification for infinite-state

systems. In International Conference on Computer Aided Verification, pages 13–29. Springer, 2015.

[48] Byron Cook, Heidy Khlaaf, and Nir Piterman. Verifying increasingly expressive temporal logics for

infinite-state systems. Journal of the ACM, 64(2):15:1–15:39, April 2017.

[49] Byron Cook and Eric Koskinen. Making prophecies with decision predicates. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL

’11, page 399–410, New York, NY, USA, 2011. Association for Computing Machinery.

[50] Byron Cook and Eric Koskinen. Reasoning about nondeterminism in programs. In Hans-Juergen

Boehm and Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 219–230. ACM, 2013.

[51] Byron Cook, Daniel Kroening, Philipp Rummer, and Christoph M. Wintersteiger. Ranking func-

tion synthesis for bit-vector relations. In Javier Esparza and Rupak Majumdar, editors, Tools and

Algorithms for the Construction and Analysis of Systems, pages 236–250, Berlin, Heidelberg, 2010.

Springer Berlin Heidelberg.

[52] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems code. In

Michael I. Schwartzbach and Thomas Ball, editors, Proceedings of the ACM SIGPLAN 2006 Confer-

ence on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14,

2006, pages 415–426. ACM, 2006.



114

[53] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving program termination. Commun.

ACM, 54(5):88–98, 2011.

[54] Patrick Cousot and Radhia Cousot. An abstract interpretation framework for termination. In John

Field and Michael Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-

28, 2012, pages 245–258. ACM, 2012.

[55] Anusha Damodaran, Fabio Di Troia, Visaggio Aaron Corrado, Thomas H. Austin, and Mark Stamp.

A Comparison of Static, Dynamic, and Hybrid Analysis for Malware Detection. J Comput Virol Hack

Tech, 13(1):1–12, February 2017. arXiv: 2203.09938.

[56] Sandeep Dasgupta, Sushant Dinesh, Deepan Venkatesh, Vikram S. Adve, and Christopher W. Fletcher.

Scalable validation of binary lifters. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 655–671, London UK, June 2020. ACM.

[57] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S Adve, and Grigore Roşu. A Com-

plete Formal Semantics of x86-64 User-Level Instruction Set Architecture. page 16, 2019.

[58] Cristina David, Daniel Kroening, and Matt Lewis. Unrestricted Termination and Non-termination

Arguments for Bit-Vector Programs. In Jan Vitek, editor, Programming Languages and Systems,

volume 9032, pages 183–204. Springer Berlin Heidelberg, 2015.

[59] Yegor Derevenets. Snowman. https://derevenets.com/.

[60] Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski. Fairness modulo

theory: A new approach to LTL software model checking. In Daniel Kroening and Corina S. Pasare-

anu, editors, Computer Aided Verification - 27th International Conference, CAV 2015, San Francisco,

CA, USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science,

pages 49–66. Springer, 2015.

[61] Daniel Dietsch, Matthias Heizmann, Vincent Langenfeld, and Andreas Podelski. Fairness modulo

theory: A new approach to LTL software model checking. In CAV (1), volume 9206 of Lecture Notes

in Computer Science, pages 49–66. Springer, 2015.

https://derevenets.com/


115

[62] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and compact modular procedure

summaries for heap manipulating programs. ACM SIGPLAN Notices, 46(6):567–577, 2011.

[63] Artem Dinaburg and Andrew Ruef. Mcsema: Static translation of x86 instructions to llvm. In ReCon

2014 Conference, Montreal, Canada, 2014.

[64] Nagat Drawel, Jamal Bentahar, Mohamed El-Menshawy, and Amine Laarej. Verifying temporal trust

logic using ctl model checking. In TRUST@ AAMAS, pages 62–74, 2018.

[65] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault,

and Laurent Xu. Spot 2.0 — a framework for LTL and ω-automata manipulation. In Proceedings of

the 14th International Symposium on Automated Technology for Verification and Analysis (ATVA’16),

volume 9938 of Lecture Notes in Computer Science, pages 122–129. Springer, October 2016.

[66] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. Dynamically discovering

likely program invariants to support program evolution. IEEE Transactions on Software Engineering,

27(2):99–123, 2001.

[67] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S

Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Science

of computer programming, 69(1-3):35–45, 2007.

[68] Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination Analysis of C Programs Using Compiler

Intermediate Languages. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saar-

bruecken, Germany, 2011.

[69] Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination Analysis of Imperative Programs Using

Bitvector Arithmetic. In Verified Software: Theories, Tools, Experiments, volume 7152, pages 261–

277. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[70] Jérôme Feret. Static analysis of digital filters. In European Symposium on Programming, pages 33–48.

Springer, 2004.

[71] Justin Ferguson and Dan Kaminsky. Reverse engineering code with IDA Pro. Syngress, 2008.

[72] FuncTion. FuncTion: An abstract domain functor for termination, 2020. https://www.di.ens.

fr/~urban/FuncTion.html.

https://www.di.ens.fr/~urban/FuncTion.html
https://www.di.ens.fr/~urban/FuncTion.html


116

[73] Inc. Galois. Macaw. https://github.com/GaloisInc/macaw.

[74] Inc. Galois. Reopt vcg. https://github.com/GaloisInc/reopt-vcg.

[75] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. Ice: A robust framework for learn-

ing invariants. In International Conference on Computer Aided Verification, pages 69–87. Springer,

2014.

[76] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten

Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie

Swiderski, and René Thiemann. Analyzing program termination and complexity automatically with

aprove. J. Autom. Reason., 58(1):3–31, 2017.

[77] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten

Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie

Swiderski, and René Thiemann. Analyzing program termination and complexity automatically with

aprove. J. Autom. Reason., 58(1):3–31, 2017.

[78] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Automated termination

proofs with aprove. In Vincent van Oostrom, editor, Rewriting Techniques and Applications, 15th

International Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceedings, volume 3091

of Lecture Notes in Computer Science, pages 210–220. Springer, 2004.

[79] Patrice Godefroid. Between Testing and Verification: Dynamic Software Model Checking. page 18.

[80] Patrice Godefroid. Model checking for programming languages using VeriSoft. In Proceedings of

the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’97,

pages 174–186. ACM Press, 1997.

[81] Patrice Godefroid. Between testing and verification: Dynamic software model checking. In Depend-

able Software Systems Engineering, 2016.

[82] Alex Groce and Rajeev Joshi. Extending Model Checking with Dynamic Analysis. In Verification,

Model Checking, and Abstract Interpretation, volume 4905, pages 142–156. Springer Berlin Heidel-

berg, 2008. Series Title: Lecture Notes in Computer Science.

https://github.com/GaloisInc/macaw
https://github.com/GaloisInc/reopt-vcg


117

[83] Bhargav S Gulavani and Sumit Gulwani. A numerical abstract domain based on expression abstraction

and max operator with application in timing analysis. In International Conference on Computer Aided

Verification, pages 370–384. Springer, 2008.

[84] Sumit Gulwani. Speed: Symbolic complexity bound analysis. In International Conference on Com-

puter Aided Verification, pages 51–62. Springer, 2009.

[85] Sumit Gulwani, Krishna K Mehra, and Trishul Chilimbi. Speed: precise and efficient static estimation

of program computational complexity. ACM Sigplan Notices, 44(1):127–139, 2009.

[86] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A Navas. The seahorn verification

framework. In International Conference on Computer Aided Verification, pages 343–361. Springer,

2015.

[87] William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. Alternation for termination.

In Radhia Cousot and Matthieu Martel, editors, Static Analysis - 17th International Symposium, SAS

2010, Perpignan, France, September 14-16, 2010. Proceedings, volume 6337 of Lecture Notes in

Computer Science, pages 304–319. Springer, 2010.

[88] Shaobo He and Zvonimir Rakamarić. Counterexample-Guided Bit-Precision Selection. In Program-

ming Languages and Systems, volume 10695, pages 534–553. Springer International Publishing, 2017.

[89] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen Hoenicke, Yong Li,

Alexander Nutz, Betim Musa, Christian Schilling, Tanja Schindler, and Andreas Podelski. Ultimate

automizer and the search for perfect interpolants - (competition contribution). In TACAS (2), volume

10806 of Lecture Notes in Computer Science, pages 447–451. Springer, 2018.

[90] Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Jochen Hoenicke, Markus Lindenmann, Betim

Musa, Christian Schilling, Stefan Wissert, and Andreas Podelski. Ultimate Automizer with Unsatis-

fiable Cores. In Tools and Algorithms for the Construction and Analysis of Systems, volume 8413,

pages 418–420. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[91] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants. ACM Sigplan

Notices, 45(1):471–482, 2010.



118

[92] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Termination Analysis by Learning

Terminating Programs. In Computer Aided Verification, volume 8559, pages 797–813. Springer Inter-

national Publishing, 2014.

[93] Joe Hendrix, Guannan Wei, and Simon Winwood. Towards Verified Binary Raising. page 4.

[94] Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder. Proving termination of programs with

bitvector arithmetic by symbolic execution. In SEFM, volume 9763 of Lecture Notes in Computer

Science, pages 234–252. Springer, 2016.

[95] Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder. Proving Termination of Programs with

Bitvector Arithmetic by Symbolic Execution. In Software Engineering and Formal Methods, volume

9763, pages 234–252. Springer International Publishing, 2016.

[96] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C. Necula, Grégoire Sutre, and Westley

Weimer. Temporal-safety proofs for systems code. In Computer Aided Verification, 14th International

Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, pages 526–538, 2002.

[97] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource analysis. In

Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages

357–370. ACM, 2011.

[98] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polymorphic recursion and par-

tial big-step operational semantics. In Kazunori Ueda, editor, Programming Languages and Systems -

8th Asian Symposium, APLAS 2010, Shanghai, China, November 28 - December 1, 2010. Proceedings,

volume 6461 of Lecture Notes in Computer Science, pages 172–187. Springer, 2010.

[99] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with polynomial potential. In

Andrew D. Gordon, editor, Programming Languages and Systems, 19th European Symposium on Pro-

gramming, ESOP 2010, Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6012 of Lecture

Notes in Computer Science, pages 287–306. Springer, 2010.

[100] Hong Jin Kang and David Lo. Adversarial Specification Mining. ACM Trans. Softw. Eng. Methodol.,

30(2):1–40, March 2021. arXiv: 2103.15350.



119

[101] Johannes Kinder. Jakstab: The static analysis platform for binaries. http://www.jakstab.

org/.

[102] Johannes Kinder and Helmut Veith. Jakstab: A static analysis platform for binaries. In International

Conference on Computer Aided Verification, pages 423–427. Springer, 2008.

[103] Johannes Kinder and Helmut Veith. Precise static analysis of untrusted driver binaries. In Formal

Methods in Computer Aided Design, pages 43–50. IEEE, 2010.

[104] Tim King, Clark Barrett, and Cesare Tinelli. Leveraging linear and mixed integer programming for

SMT. In 2014 Formal Methods in Computer-Aided Design (FMCAD). IEEE, October 2014.

[105] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of Fixed-Size Bit-Vector Logics.

Theory of Computing Systems, 59:323–376, August 2016.

[106] Daniel Kroening and Natasha Sharygina. Approximating Predicate Images for Bit-Vector Logic. In

Tools and Algorithms for the Construction and Analysis of Systems, volume 3920, pages 242–256.

Springer Berlin Heidelberg, 2006.

[107] Ton Chanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and ThanhVu Nguyen. Dy-

namite: Dynamic termination and non-termination proofs. Proc. ACM Program. Lang., 4(OOPSLA),

November 2020.

[108] Ton Chanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and ThanhVu Nguyen. Dy-

namite: Dynamic termination and non-termination proofs, 2020.

[109] Ton Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin. A resource-based logic for

termination and non-termination proofs. In Stephan Merz and Jun Pang, editors, Formal Methods

and Software Engineering - 16th International Conference on Formal Engineering Methods, ICFEM

2014, Luxembourg, Luxembourg, November 3-5, 2014. Proceedings, volume 8829 of Lecture Notes in

Computer Science, pages 267–283. Springer, 2014.

[110] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. Termination and non-termination specification

inference. In David Grove and Steve Blackburn, editors, Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17,

2015, pages 489–498. ACM, 2015.

http://www.jakstab.org/
http://www.jakstab.org/


120

[111] Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. SLING: using dynamic analysis to infer pro-

gram invariants in separation logic. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings

of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2019, Phoenix, AZ, USA, June 22-26, 2019, pages 788–801. ACM, 2019.

[112] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for program

termination. In Chris Hankin and Dave Schmidt, editors, Conference Record of POPL 2001: The

28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, London, UK,

January 17-19, 2001, pages 81–92. ACM, 2001.

[113] Jan Leike and Matthias Heizmann. Geometric nontermination arguments. In TACAS (2), volume

10806 of Lecture Notes in Computer Science, pages 266–283, 2018.

[114] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General LTL Specification Mining. page 12.

[115] Yuandong Cyrus Liu, Ton-Chanh Le, and Eric Koskinen. Source-level bitwise branching for temporal

verification, 2021.

[116] Yuandong Cyrus Liu, Chengbin Pang, Daniel Dietsch, Eric Koskinen, Ton-Chanh Le, Georgios Por-

tokalidis, and Jun Xu. Proving ltl properties of bitvector programs and decompiled binaries. In

Programming Languages and Systems, pages 285–304. Springer International Publishing, 2021.

[117] Sven Mattsen, Arne Wichmann, and Sibylle Schupp. A non-convex abstract domain for the value

analysis of binaries. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,

and Reengineering (SANER), pages 271–280, Montreal, QC, Canada, 2015. IEEE.

[118] Kenneth L McMillan. Applications of craig interpolants in model checking. In International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems, pages 1–12. Springer,

2005.

[119] Roberto Metere, Andreas Lindner, and Roberto Guanciale. Sound Transpilation from Binary to

Machine-Independent Code. arXiv:1807.10664 [cs], 10623:197–214, 2017.

[120] Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically modelled machine code.

In Tools and Algorithms for the Construction and Analysis of Systems, 13th International Conference,



121

TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceedings, pages 568–582, 2007.

[121] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. Machine-code verification for multiple

architectures - an application of decompilation into logic. In Formal Methods in Computer-Aided

Design, FMCAD 2008, Portland, Oregon, USA, 17-20 November 2008, pages 1–8, 2008.

[122] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. Decompilation into logic - improved.

In Formal Methods in Computer-Aided Design, FMCAD 2012, Cambridge, UK, October 22-25, 2012,

pages 78–81, 2012.

[123] Alexander Nadel. Solving MaxSAT with Bit-Vector Optimization. In Theory and Applications of Sat-

isfiability Testing – SAT 2018, volume 10929, pages 54–72. Springer International Publishing, 2018.

Series Title: Lecture Notes in Computer Science.

[124] Daniel Neider and Ivan Gavran. Learning Linear Temporal Properties. arXiv:1806.03953 [cs],

September 2018. arXiv: 1806.03953.

[125] Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. Size-change termi-

nation as a contract: dynamically and statically enforcing termination for higher-order programs. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 845–859. ACM, 2019.

[126] ThanhVu Nguyen, Timos Antonopoulos, Andrew Ruef, and Michael Hicks. Counterexample-guided

approach to finding numerical invariants. In Proceedings of the 2017 11th Joint Meeting on Founda-

tions of Software Engineering, pages 605–615, 2017.

[127] ThanhVu Nguyen, Matthew B Dwyer, and Willem Visser. Symlnfer: Inferring program invariants

using symbolic states. In 2017 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 804–814. IEEE, 2017.

[128] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Using dynamic analy-

sis to discover polynomial and array invariants. In 2012 34th International Conference on Software

Engineering (ICSE), pages 683–693. IEEE, 2012.



122

[129] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. DIG: A Dynamic Invariant

Generator for Polynomial and Array Invariants. ACM Transactions on Software Engineering and

Methodology, to appear, 2014.

[130] Thanhvu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Dig: A dynamic invariant

generator for polynomial and array invariants. ACM Trans. Softw. Eng. Methodol., 23(4), sep 2014.

[131] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. Using dynamic analysis

to generate disjunctive invariants. In Proceedings of the 36th International Conference on Software

Engineering, pages 608–619, 2014.

[132] Thanhvu Nguyen, Kim Hao Nguyen, and Matthew Dwyer. Using symbolic states to infer numerical

invariants. IEEE Transactions on Software Engineering, 2021.

[133] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Yoni Zohar, Clark Barrett, and Cesare Tinelli.

Towards Bit-Width-Independent Proofs in SMT Solvers. arXiv:1905.10434 [cs], June 2019.

[134] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding The Greedy,

Prodigal, and Suicidal Contracts at Scale. arXiv:1802.06038 [cs], March 2018. arXiv: 1802.06038.

[135] Aditya V Nori and Rahul Sharma. Termination proofs from tests. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, pages 246–256, 2013.

[136] NSA. Ghidra. https://www.nsa.gov/resources/everyone/ghidra/.

[137] Peter W. O’Hearn. Incorrectness logic. Proc. ACM Program. Lang., 4(POPL):10:1–10:32, 2020.

[138] Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-Driven Precondition Inference with Learned

Features. page 15.

[139] Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-driven precondition inference with learned

features. ACM SIGPLAN Notices, 51(6):42–56, 2016.

[140] Julian Parsert, Mirco Giacobbe, and Daniel Kroening. Neural termination analysis. In ESEC/FSE,

2022. To appear.

[141] Etienne Payet, Fred Mesnard, and Fausto Spoto. Non-Termination Analysis of Java Bytecode.

arXiv:1401.5292 [cs], January 2014.

https://www.nsa.gov/resources/everyone/ghidra/


123

[142] Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear ranking

functions. In Bernhard Steffen and Giorgio Levi, editors, Verification, Model Checking, and Abstract

Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy, January 11-13, 2004, Pro-

ceedings, volume 2937 of Lecture Notes in Computer Science, pages 239–251. Springer, 2004.

[143] Zvonimir Rakamaric and Michael Emmi. Smack: Decoupling source language details from verifier

implementations. In Armin Biere and Roderick Bloem, editors, Proceedings of the 26th International

Conference on Computer Aided Verification (CAV), volume 8559 of Lecture Notes in Computer Sci-

ence, pages 106–113. Springer, 2014.

[144] John Regehr. 42721 – possible integer wrong code bug. https://gcc.gnu.org/bugzilla/

show_bug.cgi?id=42721.

[145] Enric Rodríguez-Carbonell and Deepak Kapur. Automatic generation of polynomial invariants of

bounded degree using abstract interpretation. Science of Computer Programming, 64(1):54–75, 2007.

[146] Enric Rodríguez-Carbonell and Deepak Kapur. Generating all polynomial invariants in simple loops.

Journal of Symbolic Computation, 42(4):443–476, 2007.

[147] Ian Roessle, Freek Verbeek, and Binoy Ravindran. Formally verified big step semantics out of x86-64

binaries. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs

and Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 181–195, 2019.

[148] Hex-Rays SA. Ida pro. https://www.hex-rays.com/products/ida/.

[149] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V Nori. A

data driven approach for algebraic loop invariants. In European Symposium on Programming, pages

574–592. Springer, 2013.

[150] Xiaomu Shi, Yu-Fu Fu, Jiaxiang Liu, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Co-

qQFBV: A Scalable Certified SMT Quantifier-Free Bit-Vector Solver. In Computer Aided Verification,

volume 12760, pages 149–171. Springer International Publishing, 2021. Series Title: Lecture Notes

in Computer Science.

[151] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher,

John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, et al. Sok:(state of) the art of war:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42721
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42721
https://www.hex-rays.com/products/ida/


124

Offensive techniques in binary analysis. In 2016 IEEE Symposium on Security and Privacy (SP), pages

138–157. IEEE, 2016.

[152] SoSy-Lab. Cpachecker: The configurable software-verification platform, 2020. https://

cpachecker.sosy-lab.org/.

[153] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig. SmartPulse: Auto-

mated Checking of Temporal Properties in Smart Contracts. page 17.

[154] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil Dillig. SmartPulse: Auto-

mated Checking of Temporal Properties in Smart Contracts. page 17.

[155] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs, Jera Hensel, and

Peter Schneider-Kamp. Proving Termination and Memory Safety for Programs with Pointer Arith-

metic. In Automated Reasoning, volume 8562, pages 208–223. Springer International Publishing,

Cham, 2014.

[156] Gadi Tellez and James Brotherston. Automatically verifying temporal properties of pointer programs

with cyclic proof. pages 491–508, 2017.

[157] Palina Tolmach, Yi Li, Shang-Wei Lin, Yang Liu, and Zengxiang Li. A Survey of Smart Contract

Formal Specification and Verification. arXiv:2008.02712 [cs], April 2021. arXiv: 2008.02712.

[158] Vu Xuan Tung. raSAT : an SMT Solver for Polynomial Constraints. page 9.

[159] Ultimate. Ultimate automizer, 2020. https://monteverdi.informatik.uni-freiburg.

de/tomcat/Website/?ui=tool&tool=ltl_automizer.

[160] Caterina Urban. Piecewise-defined ranking functions. In 13th International Workshop on Termination

(WST 2013), page 69, 2013.

[161] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. Synthesizing Ranking Functions from Bits

and Pieces. In Tools and Algorithms for the Construction and Analysis of Systems, volume 9636, pages

54–70. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[162] Caterina Urban and Antoine Miné. An abstract domain to infer ordinal-valued ranking functions. In

European Symposium on Programming Languages and Systems, pages 412–431. Springer, 2014.

https://cpachecker.sosy-lab.org/
https://cpachecker.sosy-lab.org/
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_automizer
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=ltl_automizer


125

[163] Caterina Urban, Samuel Ueltschi, and Peter Müller. Abstract interpretation of CTL properties. volume

11002, pages 402–422, 2018.

[164] Moshe Y. Vardi. Alternating automata and program verification, pages 471–485. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1995.

[165] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic, pages 238–266. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1996.

[166] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program verification

(preliminary report). In Proceedings of the Symposium on Logic in Computer Science (LICS ’86),

Cambridge, Massachusetts, USA, June 16-18, 1986, pages 332–344. IEEE Computer Society, 1986.

[167] Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran. Formally verified lifting of

c-compiled x86-64 binaries. In Proceedings of the 43rd ACM SIGPLAN International Conference

on Programming Language Design and Implementation, PLDI 2022, page 934–949, New York, NY,

USA, 2022. Association for Computing Machinery.

[168] Freek Verbeek, Pierre Olivier, and Binoy Ravindran. Sound C Code Decompilation for a Subset

of x86-64 Binaries. In Software Engineering and Formal Methods, volume 12310, pages 247–264.

Springer International Publishing, 2020. Series Title: Lecture Notes in Computer Science.

[169] Peng Wang, Di Wang, and Adam Chlipala. Timl: a functional language for practical complexity

analysis with invariants. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–26,

2017.

[170] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de Moura. Efficiently solving quantified

bit-vector formulas. Formal Methods in System Design, 42:3–23, February 2013.

[171] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. Learning nonlinear loop

invariants with gated continuous logic networks. In Alastair F. Donaldson and Emina Torlak, editors,

Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design

and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pages 106–120. ACM, 2020.



126

[172] Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure summaries.

In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 221–234, 2008.

[173] Benjamin Zarrieß and Jens Claßen. Verifying ctl* properties of golog programs over local-effect

actions. In ECAI 2014, pages 939–944. IOS Press, 2014.

[174] Yoni Zohar, Ahmed Irfan, Makai Mann, Aina Niemetz, Andres Notzli, Mathias Preiner, Andrew

Reynolds, Clark Barrett, and Cesare Tinelli. Bit-Precise Reasoning via Int-Blasting, 2021.

[175] •. Sail architecture definition language. https://github.com/rems-project/sail.

https://github.com/rems-project/sail


1

Appendix A

Appendix for All Chapters

A.1 Proofs of Bitwise Branching Rules (Sec. 3.2)

1 from z3 i m p o r t *

2

3 d e f p rove ( r , f ) :

4 s = S o l v e r ( )

5 s . add ( Not ( f ) )

6 i f s . check ( ) == u n s a t :

7 p r i n t ( " p roved r u l e : " + r )

8 e l s e :

9 p r i n t ( " f a i l e d t o p rove r u l e : " + r )

10 p r i n t ( s . model ( ) )

11

12 d e f v e c 2 b o o l ( v ) :

13 i f v ! = 0 : r e t u r n True

14 e l s e : r e t u r n F a l s e

15

16 d e f b o o l 2 v e c ( b ) :

17 i f ( b== True ) : r e t u r n Bi tVecVal ( 1 , 1 )

18 e l s e : r e t u r n Bi tVecVal ( 0 , 1 )

19

20 d e f l t ( e1 , e2 ) :

21 r e t u r n e1 < e2

22

23 d e f l e q ( e1 , e2 ) :

24 r e t u r n e1 <= e2

25

26 d e f g t ( e1 , e2 ) :

27 r e t u r n e1 > e2

28

29 d e f geq ( e1 , e2 ) :

30 r e t u r n e1 >= e2

31



2

32 d e f eq ( e1 , e2 ) :

33 r e t u r n e1 == e2

34

35 o p _ l e = [ l t , l eq , eq ]

36 op_ge = [ gt , geq , eq ]

37

38 # Al though we d e f i n e a l l v a r i a b l e s i n t h e 32 b i t s i z e s ,

39 # a l l r u l e s a r e i n g e n e r a l and s i z e i n d e p e n d e n t ,

40 # e x c e p t R−RSHIFT−POS and R−RSHIFT−NEG.

41 # e1 and e2 a r e commuta t ive i n b i n a r y o p e r a t i o n s ,

42 # t h e r e f o r e we prove them i n one d i r e c t i o n h e r e .

43

44 e1 , e2 , r = Bi tVecs ( ’ e1 e2 r ’ , 32)

45 e 1 b i t , e 2 b i t = Bi tVecs ( ’ e 1 b i t e 2 b i t ’ , 1 )

46

47 # R e w r i t i n g r u l e s

48 # R . r u l e s f o r &

49 r u l e = f "R−AND−0 e1 == 0 |− e1 & e2 <==> 0 "

50 p r e = And ( e1 == 0)

51 p o s t = ( e1& e2 == 0)

52 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

53

54 r u l e = f "R−AND−1 ( e1 == 0 \ / e1 == 1) / \ e2 = 1 |− e1 & e2 <==> e1 "

55 p r e = And ( Or ( e1 ==0 , e1 ==1) , e2 == 1)

56 p o s t = ( e1 & e2 == e1 )

57 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

58

59 # we s p l i t i t i n t o two c a s e s p r o o f s , e1 & e2 == 1 , e1 & e2 == 0

60 r u l e = f "R−AND−LOG ( c a s e 1 ) ( e1 == 0 \ / e1 == 1) / \ ( e2 = 1 \ / e2 = 0) |− e1 & e2 <==>

e1 && e2 "

61 p r e = And ( e 1 b i t & e 2 b i t == 1)

62 p o s t = And ( e 1 b i t == 1 , e 2 b i t == 1)

63 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

64

65 r u l e = f "R−AND−LOG ( c a s e 2 ) ( e1 == 0 \ / e1 == 1) / \ ( e2 = 1 \ / e2 = 0) |− e1 & e2 <==>

e1 && e2 "

66 p r e = And ( e 1 b i t & e 2 b i t == 0)

67 p o s t = Not ( And ( e 1 b i t == 1 , e 2 b i t == 1) )

68 prove ( r u l e , I m p l i e s ( pre , p o s t ) )



3

69

70 r u l e = f "R−AND−LBS e1 >= 0 && e2 == 1 |− e1 & e2 <==> e1%2"

71 p r e = And ( e1 >= 0 , e2 == 1)

72 p o s t = ( e1 & e2 == e1 % 2)

73 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

74

75 # R . r u l e s f o r |

76 r u l e = f "R−OR−LOG ( e1 == 0 \ / e1 == 1) / \ ( e2 = 1 \ / e2 = 0) |− e1 | e2 == 0 <==> e1 &&

e2 "

77 p r e = And ( e 1 b i t | e 2 b i t == 0)

78 p o s t = And ( e 1 b i t == 0 , e 2 b i t == 0)

79 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

80

81 r u l e = f "R−OR−0 e2 == 0 |− e1 | e2 <==> e1 "

82 p r e = And ( e2 == 0)

83 p o s t = ( e1 | e2 == e1 )

84 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

85

86 r u l e = f "R−OR−1 ( e1 == 0 \ / e1 == 1) && e2 == 1 |− e1 | e2 <==> 1 "

87 p r e = And ( Or ( e1 == 0 , e1 == 0) , e2 == 1)

88 p o s t = ( e1 | e2 == 1)

89 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

90

91 # R . r u l e s f o r ^

92 r u l e = f "R−XOR−0 e2 == 0 |− e1 ^ e2 <==> e1 "

93 p r e = And ( e2 == 0)

94 p o s t = ( e1 ^ e2 == e1 )

95 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

96

97 r u l e = f "R−XOR−EQ e1=e2 =0 \ / e1=e2 =1 |− e1 ^ e2 <==> 0 "

98 p r e = Or ( And ( e1 ==0 , e2 ==0) , And ( e1 ==1 , e2 == 1) )

99 p o s t = ( e1 ^ e2 == 0)

100 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

101

102 r u l e = f "R−XOR−NEQ ( e1 =0 / \ e2 =1) \ / ( e1 =1 / \ e2 =0) |− e1 ^ e2 <==> 1 "

103 p r e = Or ( And ( e1 ==0 , e2 ==1) , And ( e1 ==0 , e2 == 1) )

104 p o s t = ( e1 ^ e2 == 1)

105 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

106



4

107 # R . r u l e s f o r >> , depends on t h e maximum b i t s i z e , h e r e we use 32 as maximum

108 # 32 b i t 2 ’ s complement

109 r u l e = f "R−RSHIFT−POS ( e1 >= 0) && ( e2 =31) |− e1 >> e2 <==> 0 "

110 p r e = And ( e1 >=0 , e2 ==31)

111 p o s t = ( e1 >> e2 == 0)

112 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

113

114 # In C r i g h t / l e f t s h i t w i th n e g a t i v e number i s u n d e f i n e d , t h e r e f o r e i m p l e m e n t a t i o n−

d e p e n d e n t .

115 r u l e = f "R−RSHIFT−NEG ( e1 < 0) && ( e2 =31) |− e1 >> e2 <==> −1"

116 p r e = And ( e1 <0 , e2 ==31)

117 p o s t = ( e1 >> e2 == −1)

118 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

119

120 # Weakening r u l e s , i n t h i s p roof , we omi t a s s i g n m e n t " : = " , a s i t can be t r e a t e d as "=="

121 # W. r u l e s f o r b i t w i s e o p e r a t o r &

122 f o r op i n o p _ l e :

123 r u l e = f "W−AND−POS e1 >= 0 && e2 >= 0 |− r { op . __name__ } e1 & e2 ==> r <= e1 && r <=

e2 "

124 p r e = And ( e1 >= 0 , e2 >= 0 , op ( r , e1 & e2 ) )

125 p o s t = And ( r <= e1 , r <= e2 )

126 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

127

128 f o r op i n o p _ l e :

129 r u l e = f "W−AND−NEG e1 < 0 && e2 < 0 |− r { op . __name__ } e1 & e2 ==> r <= e1 && r <=

e2 && r < 0 "

130 p r e = And ( e1 < 0 , e2 < 0 , op ( r , e1 & e2 ) )

131 p o s t = And ( r <= e1 , r <= e2 , r < 0 )

132 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

133

134 r u l e = f "W−AND−Mix e1 >= 0 && e2 < 0 |− r == e1 & e2 ==> 0 <= r && r <= e1 "

135 p r e = And ( e1 >= 0 , e2 < 0 , eq ( r , e1 & e2 ) )

136 p o s t = And (0 <= r , r <= e1 )

137 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

138

139 # W. r u l e s f o r |

140 f o r op i n op_ge :

141 r u l e = f "W−OR−CONST e1 > 0 && i s _ c o n s t ( e2 ) |− r { op . __name__ } e1 | e2 ==> r >= e2 "

142 p r e = And ( e1 > 0 , op ( r , e1 | e2 ) )



5

143 p o s t = And ( r >= e2 )

144 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

145

146 f o r op i n op_ge :

147 r u l e = f "W−OR−POS e1 >= 0 && e2 >= 0 |− r { op . __name__ } e1 | e2 ==> r >= e1 && r >=

e2 "

148 p r e = And ( e1 >= 0 , e2 >= 0 , op ( r , e1 | e2 ) )

149 p o s t = And ( r >= e1 , r >= e2 )

150 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

151

152 r u l e = f "W−OR−NEG e1 < 0 && e2 < 0 |− r == e1 | e2 ==> r >= e1 && r >= e2 && r < 0 "

153 p r e = And ( e1 < 0 , e2 < 0 , eq ( r , e1 | e2 ) )

154 p o s t = And ( r >= e1 , r >= e2 , r < 0 )

155 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

156

157 r u l e = f "W−OR−MIX e1 >= 0 && e2 < 0 |− r == e1 | e2 ==> r >= e2 && r < 0 "

158 p r e = And ( e1 >= 0 , e2 < 0 , eq ( r , e1 | e2 ) )

159 p o s t = And ( r >= e2 , r < 0 )

160 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

161

162 # W. r u l e s f o r ^

163 f o r op i n op_ge :

164 r u l e = f "W−XOR−POS e1 >= 0 && e2 >= 0 |− r { op . __name__ } e1 ^ e2 ==> r >= 0 "

165 p r e = And ( e1 >= 0 , e2 >= 0 , op ( r , e1 ^ e2 ) )

166 p o s t = And ( r >= 0)

167 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

168

169 f o r op i n op_ge :

170 r u l e = f "W−XOR−NEG e1 < 0 && e2 < 0 |− r { op . __name__ } e1 ^ e2 ==> r >= 0 "

171 p r e = And ( e1 < 0 , e2 < 0 , op ( r , e1 ^ e2 ) )

172 p o s t = And ( r >= 0)

173 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

174

175 f o r op i n o p _ l e :

176 r u l e = f "W−XOR−MIX e1 >= 0 && e2 < 0 |− r { op . __name__ } e1 ^ e2 ==> r < 0 "

177 p r e = And ( e1 >= 0 , e2 < 0 , op ( r , e1 ^ e2 ) )

178 p o s t = And ( r < 0)

179 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

180



6

181 # W. r u l e s f o r ~

182 r u l e = f "W−CPL−POS e1 >= 0 |− r == ~e1 ==> r < 0 "

183 p r e = And ( e1 >= 0 , eq ( r , ~e1 ) )

184 p o s t = And ( r < 0)

185 prove ( r u l e , I m p l i e s ( pre , p o s t ) )

186

187 r u l e = f "W−CPL−NEG e1 < 0 |− r == ~e1 ==> r >= 0 "

188 p r e = And ( e1 < 0 , eq ( r , ~e1 ) )

189 p o s t = And ( r >= 0)

190 prove ( r u l e , I m p l i e s ( pre , p o s t ) )



7

A.2 Full Lifted Code for PotentialMinimizeSEVPABug (Chapter. 4)

1 / /@ l t l i n v a r i a n t p o s i t i v e : ( [ ] ( AP( x > 0) ==> <>AP( y ==0) ) ) ;

2

3 / * P r o v i d e D e c l a r a t i o n s * /

4 # i n c l u d e < s t d a r g . h>

5 # i n c l u d e < s e t j m p . h>

6 # i n c l u d e < l i m i t s . h>

7 # i n c l u d e < s t d i n t . h>

8 # i n c l u d e <math . h>

9

10 / * Gl ob a l D e c l a r a t i o n s * /

11

12 / * Types D e c l a r a t i o n s * /

13 s t r u c t l _ s t r u c t _ x _ t y p e ;

14 s t r u c t l _ s t r u c t _ y _ t y p e ;

15 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n ;

16 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A r c h S t a t e ;

17 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 6 4 v 8 _ t ;

18 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 5 1 2 _ t ;

19 s t r u c t l _ s t r u c t _ u n i o n _ O C _ V e c t o r R e g ;

20 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A r i t h F l a g s ;

21 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r ;

22 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t s ;

23 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g ;

24 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A d d r e s s S p a c e ;

25 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ G P R ;

26 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 3 ;

27 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ X 8 7 S t a c k ;

28 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 6 4 v 1 _ t ;

29 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 6 4 _ t ;

30 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 4 ;

31 s t r u c t l_s t ruc t_s t ruc t_OC_MMX ;

32 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ F P U S t a t u s F l a g s ;

33 s t r u c t l_s t ruc t_union_OC_FPUAbridgedTagWord ;

34 s t r u c t l _ s t r u c t _ u n i o n _ O C _ F P U C o n t r o l S t a t u s ;

35 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ f l o a t 8 0 _ t ;

36 s t r u c t l_s t ruc t_un ion_OC_anon_OC_11 ;

37 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ F P U S t a c k E l e m ;



8

38 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 1 2 8 v 1 _ t ;

39 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 1 2 8 _ t ;

40 s t r u c t l_s t ruc t_s t ruc t_OC_FpuFXSAVE ;

41

42 / * Types D e f i n i t i o n s * /

43 s t r u c t l _ a r r a y _ 4 _ u r e p l a c e _ u 8 i n t {

44 i n t a r r a y [ 4 ] ;

45 } ;

46 s t r u c t l _ s t r u c t _ x _ t y p e {

47 s t r u c t l _ a r r a y _ 4 _ u r e p l a c e _ u 8 i n t f i e l d 0 ;

48 } _ _ a t t r i b u t e _ _ ( ( packed ) ) ;

49 s t r u c t l _ a r r a y _ 8 _ u r e p l a c e _ u 8 i n t {

50 i n t a r r a y [ 8 ] ;

51 } ;

52 s t r u c t l _ s t r u c t _ y _ t y p e {

53 s t r u c t l _ a r r a y _ 8 _ u r e p l a c e _ u 8 i n t f i e l d 0 ;

54 } _ _ a t t r i b u t e _ _ ( ( packed ) ) ;

55 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n {

56 i n t f i e l d 0 ;

57 } ;

58 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A r c h S t a t e {

59 i n t f i e l d 0 ;

60 i n t f i e l d 1 ;

61 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n f i e l d 2 ;

62 } ;

63 s t r u c t l _ a r r a y _ 8 _ u r e p l a c e _ u 6 4 i n t {

64 i n t a r r a y [ 8 ] ;

65 } ;

66 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 6 4 v 8 _ t {

67 s t r u c t l _ a r r a y _ 8 _ u r e p l a c e _ u 6 4 i n t f i e l d 0 ;

68 } ;

69 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 5 1 2 _ t {

70 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 6 4 v 8 _ t f i e l d 0 ;

71 } ;

72 s t r u c t l _ s t r u c t _ u n i o n _ O C _ V e c t o r R e g {

73 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 5 1 2 _ t f i e l d 0 ;

74 } ;

75 s t r u c t l _ a r r a y _ 3 2 _ s t r u c t _ A C _ l _ s t r u c t _ u n i o n _ O C _ V e c t o r R e g {

76 s t r u c t l _ s t r u c t _ u n i o n _ O C _ V e c t o r R e g a r r a y [ 3 2 ] ;



9

77 } ;

78 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A r i t h F l a g s {

79 i n t f i e l d 0 ;

80 i n t f i e l d 1 ;

81 i n t f i e l d 2 ;

82 i n t f i e l d 3 ;

83 i n t f i e l d 4 ;

84 i n t f i e l d 5 ;

85 i n t f i e l d 6 ;

86 i n t f i e l d 7 ;

87 i n t f i e l d 8 ;

88 i n t f i e l d 9 ;

89 i n t f i e l d 1 0 ;

90 i n t f i e l d 1 1 ;

91 i n t f i e l d 1 2 ;

92 i n t f i e l d 1 3 ;

93 i n t f i e l d 1 4 ;

94 i n t f i e l d 1 5 ;

95 } ;

96 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r {

97 s h o r t f i e l d 0 ;

98 } ;

99 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t s {

100 s h o r t f i e l d 0 ;

101 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r f i e l d 1 ;

102 s h o r t f i e l d 2 ;

103 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r f i e l d 3 ;

104 s h o r t f i e l d 4 ;

105 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r f i e l d 5 ;

106 s h o r t f i e l d 6 ;

107 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r f i e l d 7 ;

108 s h o r t f i e l d 8 ;

109 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r f i e l d 9 ;

110 s h o r t f i e l d 1 0 ;

111 s t r u c t l _ s t r u c t _ u n i o n _ O C _ S e g m e n t S e l e c t o r f i e l d 1 1 ;

112 } ;

113 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g {

114 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n f i e l d 0 ;

115 } ;



10

116 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A d d r e s s S p a c e {

117 i n t f i e l d 0 ;

118 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 ;

119 i n t f i e l d 2 ;

120 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 3 ;

121 i n t f i e l d 4 ;

122 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 5 ;

123 i n t f i e l d 6 ;

124 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 7 ;

125 i n t f i e l d 8 ;

126 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 9 ;

127 i n t f i e l d 1 0 ;

128 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 1 ;

129 } ;

130 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ G P R {

131 i n t f i e l d 0 ;

132 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 ;

133 i n t f i e l d 2 ;

134 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 3 ;

135 i n t f i e l d 4 ;

136 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 5 ;

137 i n t f i e l d 6 ;

138 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 7 ;

139 i n t f i e l d 8 ;

140 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 9 ;

141 i n t f i e l d 1 0 ;

142 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 1 ;

143 i n t f i e l d 1 2 ;

144 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 3 ;

145 i n t f i e l d 1 4 ;

146 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 5 ;

147 i n t f i e l d 1 6 ;

148 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 7 ;

149 i n t f i e l d 1 8 ;

150 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 1 9 ;

151 i n t f i e l d 2 0 ;

152 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 2 1 ;

153 i n t f i e l d 2 2 ;

154 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 2 3 ;



11

155 i n t f i e l d 2 4 ;

156 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 2 5 ;

157 i n t f i e l d 2 6 ;

158 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 2 7 ;

159 i n t f i e l d 2 8 ;

160 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 2 9 ;

161 i n t f i e l d 3 0 ;

162 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 3 1 ;

163 i n t f i e l d 3 2 ;

164 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ R e g f i e l d 3 3 ;

165 } ;

166 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 3 {

167 i n t f i e l d 0 ;

168 i n t f i e l d 1 ;

169 } ;

170 s t r u c t l _ a r r a y _ 8 _ s t r u c t _ A C _ l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 3 {

171 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 3 a r r a y [ 8 ] ;

172 } ;

173 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ X 8 7 S t a c k {

174 s t r u c t l _ a r r a y _ 8 _ s t r u c t _ A C _ l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 3 f i e l d 0 ;

175 } ;

176 s t r u c t l _ a r r a y _ 1 _ u r e p l a c e _ u 6 4 i n t {

177 i n t a r r a y [ 1 ] ;

178 } ;

179 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 6 4 v 1 _ t {

180 s t r u c t l _ a r r a y _ 1 _ u r e p l a c e _ u 6 4 i n t f i e l d 0 ;

181 } ;

182 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 6 4 _ t {

183 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ u i n t 6 4 v 1 _ t f i e l d 0 ;

184 } ;

185 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 4 {

186 i n t f i e l d 0 ;

187 s t r u c t l _ s t r u c t _ u n i o n _ O C _ v e c 6 4 _ t f i e l d 1 ;

188 } ;

189 s t r u c t l _ a r r a y _ 8 _ s t r u c t _ A C _ l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 4 {

190 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 4 a r r a y [ 8 ] ;

191 } ;

192 s t r u c t l_s t ruc t_s t ruc t_OC_MMX {

193 s t r u c t l _ a r r a y _ 8 _ s t r u c t _ A C _ l _ s t r u c t _ s t r u c t _ O C _ a n o n _ O C _ 4 f i e l d 0 ;



12

194 } ;

195 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ F P U S t a t u s F l a g s {

196 i n t f i e l d 0 ;

197 i n t f i e l d 1 ;

198 i n t f i e l d 2 ;

199 i n t f i e l d 3 ;

200 i n t f i e l d 4 ;

201 i n t f i e l d 5 ;

202 i n t f i e l d 6 ;

203 i n t f i e l d 7 ;

204 i n t f i e l d 8 ;

205 i n t f i e l d 9 ;

206 i n t f i e l d 1 0 ;

207 i n t f i e l d 1 1 ;

208 i n t f i e l d 1 2 ;

209 i n t f i e l d 1 3 ;

210 i n t f i e l d 1 4 ;

211 i n t f i e l d 1 5 ;

212 i n t f i e l d 1 6 ;

213 i n t f i e l d 1 7 ;

214 i n t f i e l d 1 8 ;

215 i n t f i e l d 1 9 ;

216 s t r u c t l _ a r r a y _ 4 _ u r e p l a c e _ u 8 i n t f i e l d 2 0 ;

217 } ;

218 s t r u c t l_s t ruc t_union_OC_FPUAbridgedTagWord {

219 i n t f i e l d 0 ;

220 } ;

221 s t r u c t l _ s t r u c t _ u n i o n _ O C _ F P U C o n t r o l S t a t u s {

222 i n t f i e l d 0 ;

223 } ;

224 s t r u c t l _ a r r a y _ 1 0 _ u r e p l a c e _ u 8 i n t {

225 i n t a r r a y [ 1 0 ] ;

226 } ;

227 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ f l o a t 8 0 _ t {

228 s t r u c t l _ a r r a y _ 1 0 _ u r e p l a c e _ u 8 i n t f i e l d 0 ;

229 } ;

230 s t r u c t l_s t ruc t_un ion_OC_anon_OC_11 {

231 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ f l o a t 8 0 _ t f i e l d 0 ;

232 } ;



13

233 s t r u c t l _ a r r a y _ 6 _ u r e p l a c e _ u 8 i n t {

234 i n t a r r a y [ 6 ] ;

235 } ;

236 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ F P U S t a c k E l e m {

237 s t r u c t l_s t ruc t_un ion_OC_anon_OC_11 f i e l d 0 ;

238 s t r u c t l _ a r r a y _ 6 _ u r e p l a c e _ u 8 i n t f i e l d 1 ;

239 } ;

240 s t r u c t l _ a r r a y _ 8 _ s t r u c t _ A C _ l _ s t r u c t _ s t r u c t _ O C _ F P U S t a c k E l e m {

241 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ F P U S t a c k E l e m a r r a y [ 8 ] ;

242 } ;

243 s t r u c t l _ a r r a y _ 9 6 _ u r e p l a c e _ u 8 i n t {

244 i n t a r r a y [ 9 6 ] ;

245 } ;

246 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w {

247 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n f i e l d 0 ;

248 i n t f i e l d 1 ;

249 i n t f i e l d 2 ;

250 } ;

251 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t C a c h e s {

252 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w f i e l d 0 ;

253 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w f i e l d 1 ;

254 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w f i e l d 2 ;

255 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w f i e l d 3 ;

256 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w f i e l d 4 ;

257 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t S h a d o w f i e l d 5 ;

258 } ;

259 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S t a t e {

260 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A r c h S t a t e f i e l d 0 ;

261 s t r u c t l _ a r r a y _ 3 2 _ s t r u c t _ A C _ l _ s t r u c t _ u n i o n _ O C _ V e c t o r R e g f i e l d 1 ;

262 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A r i t h F l a g s f i e l d 2 ;

263 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n f i e l d 3 ;

264 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t s f i e l d 4 ;

265 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ A d d r e s s S p a c e f i e l d 5 ;

266 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ G P R f i e l d 6 ;

267 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ X 8 7 S t a c k f i e l d 7 ;

268 s t r u c t l_s t ruc t_s t ruc t_OC_MMX f i e l d 8 ;

269 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ F P U S t a t u s F l a g s f i e l d 9 ;

270 s t r u c t l _ s t r u c t _ u n i o n _ O C _ a n o n f i e l d 1 0 ;

271 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S e g m e n t C a c h e s f i e l d 1 2 ;



14

272 } ;

273

274 / * E x t e r n a l G lo ba l V a r i a b l e D e c l a r a t i o n s * /

275 e x t e r n s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S t a t e * g l o b a l S t a t e ;

276

277 / * F u n c t i o n D e c l a r a t i o n s * /

278 sub_401106_foo ( s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S t a t e * tmp__14 , i n t tmp__15 , vo id * tmp__16 ) ;

279 vo id * sub_401106___VERIFIER_nondet_in t ( s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S t a t e * tmp__39 , i n t

tmp__40 , vo id * tmp__41 ) ;

280 e x t e r n vo id __VERIFIER_nondet_unsigned ( ) _ _ a t t r i b u t e _ _ ( ( __ ) ) ;

281

282 e x t e r n vo id __VERIFIER_assume ( ) _ _ a t t r i b u t e _ _ ( ( _ _ n o r e t u r n _ _ ) ) ;

283

284 / * Gl ob a l V a r i a b l e D e f i n i t i o n s and I n i t i a l i z a t i o n * /

285 i n t x ;

286 i n t y ;

287 i n t STATE_REG_RAX ;

288

289

290 / * LLVM I n t r i n s i c B u i l t i n F u n c t i o n Bodies * /

291 s t a t i c i n t l lvm_add_u32 ( i n t a , i n t b ) {

292 i n t r = a + b ;

293 r e t u r n r ;

294 }

295 s t a t i c i n t l l v m _ l s h r _ u 3 2 ( i n t a , i n t b ) {

296 i n t r = a >> b ;

297 r e t u r n r ;

298 }

299 s t a t i c i n t l lvm_and_u8 ( i n t a , i n t b ) {

300 i n t r = a & b ;

301 r e t u r n r ;

302 }

303 s t a t i c i n t l l vm_xor_u8 ( i n t a , i n t b ) {

304 i n t r = a ^ b ;

305 r e t u r n r ;

306 }

307

308

309 / * F u n c t i o n Bodies * /



15

310

311 vo id * main ( s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S t a t e * tmp__1 , i n t tmp__2 , vo id * tmp__3 ) {

312 s t r u c t l _ s t r u c t _ s t r u c t _ O C _ S t a t e * tmp__4 ;

313 i n t * tmp__5 ;

314 i n t * tmp__6 ;

315 i n t * tmp__7 ;

316 i n t * tmp__8 ;

317 i n t * tmp__9 ;

318 i n t * tmp__10 ;

319 vo id * tmp__11 ;

320 i n t tmp__12 ;

321 i n t tmp__13 ;

322 i n t tmp__14 ;

323 i n t tmp__14__PHI_TEMPORARY ;

324 i n t tmp__15 ;

325 i n t tmp__16 ;

326 i n t tmp__17 ;

327 i n t tmp__18 ;

328 i n t _ 2 e _ l c s s a 3 ;

329 i n t _2e_lcssa3__PHI_TEMPORARY ;

330 i n t _ 2 e _ l c s s a 2 ;

331 i n t _2e_lcssa2__PHI_TEMPORARY ;

332 i n t _ 2 e _ l c s s a 1 ;

333 i n t _2e_lcssa1__PHI_TEMPORARY ;

334 i n t tmp__19 ;

335

336 tmp__4 = g l o b a l S t a t e ;

337 tmp__5 = (&tmp__4−> f i e l d 2 . f i e l d 1 ) ;

338 tmp__6 = (&tmp__4−> f i e l d 2 . f i e l d 3 ) ;

339 tmp__7 = (&tmp__4−> f i e l d 2 . f i e l d 7 ) ;

340 tmp__8 = (&tmp__4−> f i e l d 2 . f i e l d 9 ) ;

341 tmp__9 = (&tmp__4−> f i e l d 2 . f i e l d 1 3 ) ;

342 tmp__10 = (&tmp__4−> f i e l d 2 . f i e l d 5 ) ;

343 go to b lock_401119 ;

344

345 do { / * S y n t a c t i c loop ’ b lock_401119 ’ t o make GCC happy * /

346 block_401119 :

347 STATE_REG_RAX = __VERIFIER_nondet_int ( ) ;

348



16

349 tmp__11 = / * t a i l * / sub_401106___VERIFIER_nondet_in t ( / *UNDEF* / ( ( s t r u c t

l _ s t r u c t _ s t r u c t _ O C _ S t a t e * ) / *NULL* / 0 ) , / *UNDEF* / (0UL) , tmp__3 ) ;

350 tmp__12 = STATE_REG_RAX ;

351 x = tmp__12 ;

352 y = 1 ;

353 tmp__13 = tmp__12 >> 3 1 ;

354

355

356 / * i f ( ( ( ( ( ( ( tmp__13 == 0u ) &1) ) & ( ( ( ~ ( ( ( ( tmp__12 == 0u ) &1) ) ) ) &1) ) ) &1) ) ) { * /

357 i f ( ( ( ( ( tmp__13 == 0u ) &1) ) && ( tmp__12 != 0u ) ) &1) {

358

359 tmp__14__PHI_TEMPORARY = tmp__12 ; / * f o r PHI node * /

360 go to b lock_401135 ;

361 } e l s e {

362 _2e_lcssa3__PHI_TEMPORARY = tmp__12 ; / * f o r PHI node * /

363 _2e_lcssa2__PHI_TEMPORARY = ( ( ( tmp__12 == 0u ) &1) ) ; / * f o r PHI node * /

364 _2e_lcssa1__PHI_TEMPORARY = tmp__13 ; / * f o r PHI node * /

365 go to b lock_401163 ;

366 }

367

368 do { / * S y n t a c t i c loop ’ b lock_401135 ’ t o make GCC happy * /

369 block_401135 :

370 tmp__14 = tmp__14__PHI_TEMPORARY ;

371 tmp__15 = tmp__14−1;

372 tmp__16 = tmp__14−2;

373 tmp__17 = tmp__16 > >31;

374 tmp__18 = tmp__15 > >31;

375

376 / * i f ( ( ( ( ( ( ( tmp__16 != 0u ) &1) ) & ( ( ( ( ( ( tmp__17 == 0u ) &1) ) ^ ( ( ( ( l lvm_add_u32 ( (

tmp__17 ^ tmp__18 ) , tmp__18 ) ) == 2u ) &1) ) ) &1) ) ) &1) ) ) { * /

377 i f ( ( ( tmp__16 != 0u ) &1) &&(tmp__17 == 0u ) ) {

378 go to b lock_401159_2e_backedge ;

379 } e l s e {

380 go to b l o c k _ 4 0 1 1 4 f ;

381 }

382

383 b l o c k _ 4 0 1 1 4 f :

384 y = 0 ;

385 go to b lock_401159_2e_backedge ;



17

386

387 b lock_401159_2e_backedge :

388 / * i f ( ( ( ( ( ( ( tmp__18 == 0u ) &1) ) & ( ( ( ~ ( ( ( ( tmp__15 == 0u ) &1) ) ) ) &1) ) ) &1) ) ) { * /

389

390 i f ( ( ( ( ( ( ( tmp__18 == 0u ) &1) ) && ( tmp__15 != 0u ) ) &1) ) ) {

391 tmp__14__PHI_TEMPORARY = tmp__15 ; / * f o r PHI node * /

392 go to b lock_401135 ;

393 } e l s e {

394 go to b l o c k _ 4 0 1 1 5 9 _ 2 e _ b l o c k _ 4 0 1 1 6 3 _ c r i t _ e d g e ;

395 }

396

397 } w h i l e ( 1 ) ; / * end of s y n t a c t i c l oop ’ b lock_401135 ’ * /

398 b l o c k _ 4 0 1 1 5 9 _ 2 e _ b l o c k _ 4 0 1 1 6 3 _ c r i t _ e d g e :

399 x = tmp__15 ;

400 _2e_lcssa3__PHI_TEMPORARY = tmp__15 ; / * f o r PHI node * /

401 _2e_lcssa2__PHI_TEMPORARY = ( ( ( tmp__15 == 0u ) &1) ) ; / * f o r PHI node * /

402 _2e_lcssa1__PHI_TEMPORARY = tmp__18 ; / * f o r PHI node * /

403 go to b lock_401163 ;

404

405 block_401163 :

406 _ 2 e _ l c s s a 3 = _2e_lcssa3__PHI_TEMPORARY ;

407 _ 2 e _ l c s s a 2 = ( ( _2e_lcssa2__PHI_TEMPORARY ) &1) ;

408 _ 2 e _ l c s s a 1 = _2e_lcssa1__PHI_TEMPORARY ;

409 tmp__19 = / * t a i l * / l lvm_OC_ctpop_OC_i32 ( ( _ 2 e _ l c s s a 3 & 255) ) ;

410 * tmp__5 = 0 ;

411 * tmp__6 = ( ( ( ( ( i n t ) tmp__19 ) )& 1) ) ^ 1 ;

412 * tmp__7 = ( ( ( i n t ) ( i n t ) _ 2 e _ l c s s a 2 ) ) ;

413 * tmp__8 = ( ( ( i n t ) _ 2 e _ l c s s a 1 ) ) ;

414 * tmp__9 = 0 ;

415 * tmp__10 = 0 ;

416 go to b lock_401119 ;

417

418 } w h i l e ( 1 ) ; / * end of s y n t a c t i c l oop ’ b lock_401119 ’ * /

419 }



18

A.3 Bug in GCC

Example 1 (A reported bug in gcc [144]).
1 static uint64_t div(uint64_t ui1, uint64_t ui2){

2 return (ui2 == 0) ? ui1 : (ui1 / ui2); }

3 static int8_t mod(int8_t si1, int8_t si2){

4 return (si2==0) || ((si1==-128) && (si2==-1)) ? si1 : (si1 % si2); }

5 static int32_t g_5=0, g_11=0;

6 int main (){

7 uint64_t l_7 = 0x509CB0BEFCDF11BBLL;

8 g_11 ^= l_7 && ((div((mod(g_5, 0)), -1L)) != 1L);

9 if (!g_11) return __VERIFIER_error();

10 return 0;

11 }

From the source semantics of this example, variable g_11 would have value 1 at

Line 9 and __VERIFIER_error is un-reachable. However, a defect [7] in gcc folds

((div((mod(g_5, 0)), -1L)) != 1L) to 0. This makes g_11 become 0 at Line

9, introducing a new error behavior.



19

A.4 DRNLA on CTLNLABench-DYNAMITE benchmarks

Benchmark Res Time It. Ref.

Stages

Output

bresenham1-F.c 4 210.1 2 v,en,v,v `36 : 2Y x−2X2y+2Y −v+c ≤ k 7→ 0 ≥ c−k, k−x ≤ −1

bresenham1-T.c 4 204.2 2 v,en,v,v `36 : 2Y x−2X2y+2Y −v+c ≤ k 7→ 0 ≥ c−k, k−c ≤ −1

cohencu2-F.c ≈ 517.5 1 v,v `28 : 3n2 + 3n+ 1 ≤ k 7→ 0 ≥ y − k, k − y ≤ −1

cohencu2-T.c ≈ 473.7 1 v,v `32 : 3n2 + 3n+ 1 ≤ k 7→ 0 ≥ y − k, k − y ≤ −1

cohencu3-F.c ≈ 621.8 1 v,v `31 : n3 ≤ k 7→ 0 ≥ c− k, ((k − x) <= −(1))

cohencu3-T.c ≈ 621.4 1 v,v `31 : n3 ≤ k 7→ 0 ≥ c− k, ((k − x) <= −(1))

cohencu4-F.c ≈ 780.3 2 v,en,v,v `31 : yz−18x−12y+2z−6+c ≤ k 7→ 0 ≥ c−k, k−c ≤ −1

cohencu4-T.c ≈ 773.9 2 v,en,v,v `31 : yz−18x−12y+2z−6+c ≤ k 7→ 0 ≥ c−k, k−c ≤ −1

cohencu5-F.c 4 179.4 2 v,en,v,v `35 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ c−k, k− c ≤ −1

cohencu5-T.c 4 177.4 2 v,en,v,v `35 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

cohencu7-F.c ≈ 194.9 2 v,en,v,v `30 : ((x + y) <= (((a + 1)(a + 1))(a + 1))) 7→ (0 >=

(−(a) + n)), (((0 + (n− 1)) + (a1)) <= −1)

cohencu7-T.c ≈ 667.5 2 v,en,v,v `28 : ((x + y) <= (((a + 1)(a + 1))(a + 1))) 7→ (0 >=

(−(a) + n)), (((0 + (n− 1)) + (a1)) <= −1)

dijkstra2-F.c ≈ 687.5 2 v,en,v,v `46 : (((((xpxp) + (rq)) − (nq)) + c) <= k) 7→ 0 ≥

c− k, k − c ≤ −1

dijkstra2-T.c ≈ 686.0 2 v,en,v,v `48 : (((((xpxp) + (rq)) − (nq)) + c) <= k) 7→ 0 ≥

c− k, k − c ≤ −1

dijkstra3-F.c ≈ 628.6 1 v,v `45 : h3−12hnq+16nx′−hq2−4x′q2+12hqr−6x′qr+

c ≤ k 7→ 0 ≥ c− k, ((−(c) + k) <= −(1))

dijkstra3-T.c ≈ 627.5 1 v,v `45 : h3−12hnq+16nx′−hq2−4x′q2+12hqr−6x′qr+

c ≤ k 7→ 0 ≥ c− k, ((−(c) + k) <= −(1))

dijkstra4-F.c ≈ 629.7 1 v,v `45 : ((((((((((((hh)n) − (((4h)n)xp)) + ((4(nn))q)) −

((nq)q)) − ((hh)r)) + (((4h)xp)r)) − (((8n)q)r)) +

((qq)r)) + (((4q)r)r)) + c) <= k) 7→ 0 ≥ c− k, ((−(c) +

k) <= −(1))

dijkstra4-T.c ≈ 629.1 1 v,v `45 : ((((((((((((hh)n) − (((4h)n)xp)) + ((4(nn))q)) −

((nq)q)) − ((hh)r)) + (((4h)xp)r)) − (((8n)q)r)) +

((qq)r)) + (((4q)r)r)) + c) <= k) 7→ 0 ≥ c− k, ((−(c) +

k) <= −(1))

dijkstra5-F.c ≈ 630.8 1 v,v `46 : (((((((((hh)xp) − (((4h)n)q)) + (((4n)xp)q)) −

((xpq)q)) + (((4h)q)r)) − (((4xp)q)r)) + c) <= k) 7→

0 ≥ c− k, ((−(c) + k) <= −(1))



20

dijkstra5-T.c ≈ 613.9 1 v,v `46 : (((((((((hh)xp) − (((4h)n)q)) + (((4n)xp)q)) −

((xpq)q)) + (((4h)q)r)) − (((4xp)q)r)) + c) <= k) 7→

0 ≥ c− k, ((−(c) + k) <= −(1))

divbin1-F.c ? 1.2 0

divbin1-T.c ? 1.3 0

egcd-F.c ≈ TO 0

egcd-T.c ≈ TO 0

egcd2-F.c ≈ 696.0 1 v,v `33 : (c >= ((xq) + (ys))) 7→ (0 >= (b − c)), ((−(b) +

c) <= −(1))

egcd2-T.c ≈ 681.8 1 v,v `33 : (c >= ((xq) + (ys))) 7→ (0 >= (b − c)), ((−(b) +

c) <= −(1))

egcd3-F.c ≈ TO 8

v,tn,v,tp,

v,tn,v,tp,

v,tn,v,tp,

v,tn,v,tp,

v

egcd3-T.c ≈ TO 8

v,tn,v,tp,

v,tn,v,tp,

v,tn,v,tp,

v,tn,v,tp,

v

fermat1-F.c ≈ TO 0

fermat1-T.c ≈ TO 0

geo1-F.c 4 131.0 1 v,v `24 :!(((((((xz) − x) − y) + 1) + c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

geo1-T.c 4 130.6 1 v,v `24 :!(((((((xz) − x) − y) + 1) + c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

geo2-F.c 4 122.5 1 v,v `24 :!((((((1 + (xz)) − x) − (zy)) + c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

geo2-T.c 4 134.7 1 v,v `25 :!((((((1 + (xz)) − x) − (zy)) + c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

geo3-F.c 4 171.1 1 v,v `25 :!(((((((zx)−x)+ a)− ((az)y))+ c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

geo3-T.c 4 163.5 1 v,v `25 :!(((((((zx)−x)+ a)− ((az)y))+ c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

hard-F.c ? 7.9 0

hard-T.c ? 7.4 0

hard2-F.c ? 0.9 0

hard2-T.c ? 0.8 0



21

prod4br-F.c ≈ 239.0 5

v,ep,v,en,

v,tn,v,en,

v,tn,v

prod4br-T.c ≈ 159.3 4

v,ep,v,en,

v,tn,v,en,

v

prodbin-F.c ≈ 654.5 2 v,en,v,v `26 :!((0! = (((y + z) + (xy)) − (ab)))) 7→ (0 >=

y), ((0+(y−1)) <= −1)&&(((0+(p−1))+(y−1)) <=

−2)&&((0+(p−1)) <= −1)&&(((0+(p1))+(y−1)) <=

1)

prodbin-T.c ≈ 619.6 1 v,v `26 :!((0! = (((y + z) + (xy)) − (ab)))) 7→ (0 >=

y), (−(y) <= −(1))

ps2-F.c 4 29.0 1 v,v `20 :!(((((c+ (yy))− (2x)) + y) < k)) 7→ (0 >= (−(c) +

k)), ((c− k) <= −(1))

ps2-T.c 4 53.4 2 v,ep,v,v `20 :!(((((c+ (yy))− (2x)) + y) < k)) 7→ (((0 + (k1)) +

(y − 1)) <= 0), ((−(k) + y) <= −(1))

ps3-F.c 4 62.8 2 v,ep,v,v `20 :!((((((c+ (6x))− (((2y)y)y))− ((3y)y))− y) < k))

7→ (((0 + (k1)) + (c− 1)) <= 0), ((c− k) <= −(1))

ps3-T.c 4 44.9 1 v,v `20 :!((((((c+ (6x))− (((2y)y)y))− ((3y)y))− y) < k))

7→ (0 >= (k − y)), ((−(k) + y) <= −(1))

ps4-F.c 4 59.8 2 v,ep,v,v `20 :!((((((c+(4x))−(((yy)y)y))−(((2y)y)y))−(yy)) <

k)) 7→ (((0+(k1))+(y−1)) <= 0), ((−(k)+y) <= −(1))

ps4-T.c 4 58.1 2 v,ep,v,v `20 :!((((((c+(4x))−(((yy)y)y))−(((2y)y)y))−(yy)) <

k)) 7→ (((0+(k1))+(y−1)) <= 0), ((−(k)+y) <= −(1))

ps5-F.c 4 30.4 1 v,v `19 :!(((((((c + (((((6y)y)y)y)y)) + ((((15y)y)y)y)) +

(((10y)y)y)) − (30x)) − y) < k)) 7→ (0 >= (−(c) +

k)), ((c− k) <= −(1))

ps5-T.c 4 41.3 1 v,v `19 :!(((((((c + (((((6y)y)y)y)y)) + ((((15y)y)y)y)) +

(((10y)y)y)) − (30x)) − y) < k)) 7→ (0 >= (k −

y)), ((−(k) + y) <= −(1))

ps6-F.c 4 60.3 2 v,ep,v,v `19 : ¬(c − 2y6 − 6y5 − 5y4 + y2 + 12x ≤ k) 7→ (((0 +

(k1)) + (c− 1)) <= 0), ((c− k) <= −(1))

ps6-T.c 4 68.6 2 v,ep,v,v `19 : ¬(c − 2y6 − 6y5 − 5y4 + y2 + 12x ≤ k) 7→ (((0 +

(k1)) + (y − 1)) <= 0), ((−(k) + y) <= −(1))

sqrt1-F.c 4 117.0 2 v,en,v,v `21 : t2 − 4s+ 2t+ 1 + c ≤ k 7→ 0 ≥ a− k, k − a ≤ −1

sqrt1-T.c 4 116.3 2 v,en,v,v `21 : t2 − 4s+ 2t+ 1 + c ≤ k 7→ 0 ≥ a− k, k − a ≤ −1



22

A.5 DRNLA on CTLNLABench-PLDI13 benchmarks

Benchmark Res Time It. Ref.

Stages

Output

neg-afagp-F.c 4 289.1 2 v,en,v,v `18 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

neg-afagp-T.c 4 287.2 2 v,en,v,v `18 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ c−k, k− c ≤ −1

neg-afefp-F.c 4 225.2 2 v,en,v,v `18 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(n− 1)) + (k1)) <= −1)

neg-afegp-F.c 4 226.0 2 v,en,v,v `18 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

neg-afegp-T.c 4 217.4 2 v,en,v,v `18 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ c−k, k− c ≤ −1

neg-afp-F.c 4 164.4 2 v,en,v,v `18 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

neg-afp-T.c 4 160.9 2 v,en,v,v `18 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ c−k, k− c ≤ −1

neg-efafp-F.c 4 243.0 2 v,en,v,v `31 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

neg-egafp-F.c 4 282.2 2 v,en,v,v `19 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ c−k, k− c ≤ −1

neg-egafp-T.c 4 313.3 2 v,en,v,v `19 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

neg-egimpafp-T.c 4 251.4 2 v,en,v,v `20 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

afagp-F.c 4 103.9 2 v,ep,v,v `18 :!(((((c+ (yy))− (2x)) + y) < k)) 7→ (((0 + (k1)) +

(c− 1)) <= 0), ((c− k) <= −(1))

afagp-T.c 4 74.8 1 v,v `18 :!(((((c+ (yy))− (2x)) + y) < k)) 7→ (0 >= (−(c) +

k)), ((c− k) <= −(1))

afefp-T.c 4 179.8 2 v,en,v,v `19 : t2 − 4s+ 2t+ 1 + c ≤ k 7→ 0 ≥ a− k, k − a ≤ −1

afegp-F.c 4 239.7 2 v,en,v,v `18 : t2 − 4s+ 2t+ 1 + c ≤ k 7→ 0 ≥ a− k, k − a ≤ −1

afegp-T.c 4 177.8 2 v,en,v,v `19 : t2 − 4s+ 2t+ 1 + c ≤ k 7→ 0 ≥ c− k, k − c ≤ −1

afp-F.c 4 163.8 2 v,en,v,v `19 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

afp-T.c 4 166.8 2 v,en,v,v `19 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ c−k, k− c ≤ −1

agafp-F.c 4 65.7 1 v,v `23 : z2− 12y− 6z+12+ c ≤ k 7→ 0 ≥ (c− k)&&(0 ==

(c− n)), ((−(n) + k) <= −(1))

agafp-T.c 4 36.3 1 v,v `23 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ c− k, ((−(c) +

k) <= −(1))



23

efafp-T.c 4 231.1 2 v,en,v,v `29 : z2 − 12y − 6z + 12 + c ≤ k 7→ 0 ≥ n − k, (((0 +

(k1)) + (n− 1)) <= −1)

afagp-T.c 4 160.3 1 v,v `21 :!(((((((xz) − x) − y) + 1) + c) < k)) 7→ (0 >=

(−(c) + k)), ((c− k) <= −(1))

afefp-T.c 4 312.1 2 v,en,v,v `23 : ((((((((2Y )xp)−((2X)y))−X)+(2Y ))−v)+c) <=

k) 7→ 0 ≥ c− k, k − c ≤ −1

agafp-T.c 4 24.4 1 v,v `22 : (((((c+(4x))− (((yy)y)y))− (((2y)y)y))− (yy)) <

k) 7→ ((c− k) <= −(1)), (0 >= (−(c) + k))

neg-afefp-F.c 4 233.2 1 v,v `17 : (((((1+(xz))−x)− (zy))+ c) < k) 7→ ((c−k) <=

−(1)), (0 >= (−(c) + k))

neg-afp-F.c 4 68.2 2 v,en,v,v `17 : (((((c+(6x))− (((2y)y)y))− ((3y)y))− y) < k) 7→

((c− k) <= −(1)), (((0 + (k1)) + (c− 1)) <= 0)



24

A.6 DRNLA on Handcrafted benchmarks

Benchmark Res Time It. Stages Output

if-cubic-F.c 4 51.5 3 v, tn, v, en,

v, v

`6 : (8 == ((xx)x)) 7→ (((4 >= (p + x))&&(0 >=

(p − x))&&(0 >= (−(p) + x))&&((−(p) − x) <=

−(4)))||((2 >= p)&&(0 >= (−(p) + x))&&((−(p) −

x) <= −(4)))), (((0 == (p − 2))&&(1 >= (p −

x))&&!(((2 >= p)&&(0 >= (−(p) + x))&&((−(p) −

x) <= −(4)))))||(0 >= x))

if-cubic-T.c 4 51.3 3 v, tn, v, en,

v, v

`6 : (8 == ((xx)x)) 7→ (((2 >= p)&&(0 >=

(−(p) + x))&&((−(p) − x) <= −(4)))||((−(x) <=

−(2))&&(4 >= (p + x))&&(0 >= (−(p) +

x)))), (((0 == (p− 2))&&(0 >= −(x))&&!(((−(x) <=

−(2))&&(4 >= (p+x))&&(0 >= (−(p)+x)))))||(1 >=

(p+ x)))

if-F.c 4 78.8 6 v, tn, v, ep,

v, tp, v, tn,

v, tp, v, v

`6 : (36 == (xx)) 7→ ((((0 + (x1)) <=

6)&&!(((0 == (p − 2))&&((−(p) + x) <=

−(1)))))||((x <= −(6))&&(−(p) <= −(2))&&(8 >=

(p − x))))&&!(((0 == (p − 2))&&(0 >=

(p − x))&&(3 >= (−(p) + x)))), (((((0 ==

(p − 2))&&(0 >= −(x))&&!(((2 >= p)&&(−(x) <=

−(6))&&(4 >= (−(p) + x)))))||((0 == (p −

2))&&((−(p) + x) <= −(1))))&&!(((x <=

−(6))&&(−(p) <= −(2))&&(8 >= (p− x)))))||((0 ==

(p− 2))&&(0 >= (p− x))&&(3 >= (−(p) + x))))

if-T.c 4 76.5 6 v, tn, v, ep,

v, tp, v, tn,

v, tp, v, v

`7 : (36 == (xx)) 7→ (((((0 + (x1)) + (p1)) <=

8)&&!(((0 == (p − 2))&&(3 >= x))))||((−(p) <=

−(2))&&(8 >= (p − x))&&((p + x) <=

−(4))))&&!(((2 >= p)&&(5 >= x)&&(−(p) <=

−(2))&&((−(p) − x) <= −(6)))), (((((0 ==

(p − 2))&&(1 >= (p − x))&&!(((6 >=

x)&&(−(p) <= −(2))&&((p− x) <= −(4)))))||((0 ==

(p − 2))&&(3 >= x)))&&!(((−(p) <= −(2))&&(8 >=

(p − x))&&((p + x) <= −(4)))))||((2 >= p)&&(5 >=

x)&&(−(p) <= −(2))&&((−(p)− x) <= −(6))))



25

square-loop-F.c 4 383.6 12 v, tn, v, tn,

v, tn, v, tn,

v, tn, v, tn,

v, tn, v, tn,

v, tn, v, tn,

v, tn, v, v

`8 : (49 < (xx)) 7→ ((((((((((((−(x) <=

−(8))||((0 == (p − 2))&&(3 >= y)&&((−(p) − y) <=

−(3))&&((−(p) + x) <= −(10))))||((0 == (p −

2))&&(7 >= (p+y))&&((x+y) <= −(4))&&((−(p)−

y) <= −(6))))||((0 == (p − 2))&&(10 >=

y)&&((−(p) − y) <= −(7))&&((−(p) + x) <=

−(10))))||((0 == (p − 2))&&(x <= −(8))&&(10 >=

(−(p) + y))&&((−(p) − y) <= −(13))))||((0 == (p −

2))&&(x <= −(8))&&(16 >= (−(p) + y))&&((−(p)−

y) <= −(15))))||((0 == (p − 2))&&((p + x) <=

−(6))&&((p − y) <= −(17))&&(19 >= (−(p) +

y))))||((0 == (p − 2))&&(17 >= (x + y))&&((p −

y) <= −(20))&&((−(p) + x) <= −(10))))||((0 ==

(p − 2))&&((p + x) <= −(6))&&((−(x) − y) <=

−(18))))||((0 == (p − 1))&&(14 >= y)&&(5 >=

(x + y))&&(0 >= (p − y))&&((−(p) + x) <=

−(9))))||((0 == (p − 1))&&(8 >= (x + y))&&((p −

y) <= −(13))&&((−(p) + x) <= −(9))))||((0 ==

(p − 1))&&((−(x) − y) <= −(9))&&((−(p) +

x) <= −(9)))), (7 >= x)&&!(((0 == (p −

2))&&(3 >= y)&&((−(p) − y) <= −(3))&&((−(p) +

x) <= −(10))))&&!(((0 == (p − 2))&&(7 >=

(p + y))&&((x + y) <= −(4))&&((−(p) − y) <=

−(6))))&&!(((0 == (p − 2))&&(10 >= y)&&((−(p) −

y) <= −(7))&&((−(p) + x) <= −(10))))&&!(((0 ==

(p − 2))&&(x <= −(8))&&(10 >= (−(p) +

y))&&((−(p) − y) <= −(13))))&&!(((0 == (p −

2))&&(x <= −(8))&&(16 >= (−(p) + y))&&((−(p)−

y) <= −(15))))&&!(((0 == (p − 2))&&((p + x) <=

−(6))&&((p − y) <= −(17))&&(19 >= (−(p) +

y))))&&!(((0 == (p − 2))&&(17 >= (x + y))&&((p −

y) <= −(20))&&((−(p) + x) <= −(10))))&&!(((0 ==

(p − 2))&&((p + x) <= −(6))&&((−(x) − y) <=

−(18))))&&!(((0 == (p − 1))&&(14 >= y)&&(5 >=

(x + y))&&(0 >= (p − y))&&((−(p) + x) <=

−(9))))&&!(((0 == (p− 1))&&(8 >= (x+ y))&&((p−

y) <= −(13))&&((−(p) + x) <= −(9))))&&!(((0 ==

(p − 1))&&((−(x) − y) <= −(9))&&((−(p) + x) <=

−(9))))



26

square-loop-T.c 4 233.3 7 v, tn, v, tn,

v, tn, v, tn,

v, tn, v, tn,

v, v

`8 : (49 < (xx)) 7→ (((((((−(x) <= −(8))||((0 ==

(p − 2))&&(1 >= (p − y))&&(5 >= (p +

y))&&((p + x) <= −(6))))||((0 == (p − 2))&&(5 >=

y)&&(−(y) <= −(4))&&((x + y) <= −(4))))||((0 ==

(p − 2))&&((p + x) <= −(6))&&((x + y) <=

−(1))&&((−(p) − y) <= −(7))))||((0 == (p −

2))&&(0 >= (−(x) − y))&&((−(p) + x) <=

−(10))))||((0 == (p − 1))&&(0 >= (p − y))&&((x +

y) <= −(6))&&((−(p) + x) <= −(9))))||((0 ==

(p− 1))&&(x <= −(8))&&(5 >= (−(x)− y)))), (7 >=

x)&&!(((0 == (p − 2))&&(1 >= (p − y))&&(5 >=

(p + y))&&((p + x) <= −(6))))&&!(((0 ==

(p − 2))&&(5 >= y)&&(−(y) <= −(4))&&((x +

y) <= −(4))))&&!(((0 == (p − 2))&&((p + x) <=

−(6))&&((x + y) <= −(1))&&((−(p) − y) <=

−(7))))&&!(((0 == (p − 2))&&(0 >= (−(x) −

y))&&((−(p) + x) <= −(10))))&&!(((0 == (p −

1))&&(0 >= (p−y))&&((x+y) <= −(6))&&((−(p)+

x) <= −(9))))&&!(((0 == (p − 1))&&(x <=

−(8))&&(5 >= (−(x)− y))))

while-cubic-F.c 4 87.0 7 v, tn, v, ep,

v, tp, v, tn,

v, tp, v, tn,

v, v

`6 : ((64 >= ((yy)y))&&(1 <= (yy))) 7→

(((((((0 + (p1)) + (y1)) <= 6)&&!(((0 >= y)&&(2 >=

(p − y))&&((−(p) − y) <= −(2)))))||((0 ==

(p − 1))&&(5 >= (p + y))&&((p − y) <=

−(1))))&&!(((1 >= p)&&(0 >= −(y))&&(−(p) <=

−(1))&&(4 >= (−(p) + y)))))||((0 == (p −

1))&&(4 >= y)&&((p − y) <= −(1)))), (((((−(p) <=

−(1))&&(0 >= −(y))&&((−(p) − y) <=

−(2))&&!(((0 == (p − 2))&&(4 >= y)&&((−(p) −

y) <= −(3)))))||((0 >= y)&&(2 >= (p −

y))&&((−(p) − y) <= −(2))))&&!(((0 ==

(p − 1))&&(5 >= (p + y))&&((p − y) <=

−(1)))))||((1 >= p)&&(0 >= −(y))&&(−(p) <=

−(1))&&(4 >= (−(p) + y))))&&!(((0 ==

(p− 1))&&(4 >= y)&&((p− y) <= −(1))))



27

while-cubic-T.c 4 84.4 7 v, tn, v, ep,

v, tp, v, tn,

v, tp, v, tn,

v, v

`6 : ((64 >= ((yy)y))&&(1 <= (yy))) 7→ (((((((0 +

(p1)) + (y1)) <= 6)&&!(((0 >= −(y))&&(−(p) <=

−(2))&&(2 >= (p + y)))))||((0 == (p − 1))&&(4 >=

y)&&(−(y) <= −(2))))&&!(((1 >= p)&&(5 >=

y)&&(0 >= −(y))&&(−(p) <= −(1)))))||((0 ==

(p − 1))&&((p − y) <= −(1))&&(3 >=

(−(p) + y)))), (((((0 >= −(y))&&((−(p) − y) <=

−(2))&&!(((0 == (p − 2))&&(4 >= y)&&(−(y) <=

−(1)))))||((0 >= −(y))&&(−(p) <= −(2))&&(2 >=

(p + y))))&&!(((0 == (p − 1))&&(4 >=

y)&&(−(y) <= −(2)))))||((1 >= p)&&(5 >=

y)&&(0 >= −(y))&&(−(p) <= −(1))))&&!(((0 ==

(p− 1))&&((p− y) <= −(1))&&(3 >= (−(p) + y))))

while-F.c 4 190.4 6 v, tn, v, tn,

v, tn, v, tn,

v, tn, v, v

`9 : (63 <= ((xx) − (2x))) 7→ ((((((((p − x) <=

−(7))&&((−(p) − x) <= −(10)))||((0 == (p −

2))&&(1 >= (p − y))&&(0 >= (−(p) + y))&&((x +

y) <= −(6))))||((0 == (p − 2))&&(0 >= (p −

y))&&((x + y) <= −(5))))||((0 == (p − 2))&&(4 >=

(−(x) − y))&&((−(p) + x) <= −(9))))||((0 == (p −

1))&&(4 >= (p+ y))&&(0 >= (p− y))&&((x+ y) <=

−(8))))||((0 == (p− 1))&&(0 >= (p− y))&&((−(p) +

x) <= −(8)))), (8 >= x)&&!(((0 == (p−2))&&(1 >=

(p − y))&&(0 >= (−(p) + y))&&((x + y) <=

−(6))))&&!(((0 == (p− 2))&&(0 >= (p− y))&&((x+

y) <= −(5))))&&!(((0 == (p − 2))&&(4 >= (−(x) −

y))&&((−(p) + x) <= −(9))))&&!(((0 == (p −

1))&&(4 >= (p + y))&&(0 >= (p − y))&&((x +

y) <= −(8))))&&!(((0 == (p − 1))&&(0 >= (p −

y))&&((−(p) + x) <= −(8))))



28

while-T.c 4 189.6 6 v, tn, v, tn,

v, tn, v, tn,

v, tn, v, v

`9 : (63 <= ((xx) − (2x))) 7→ ((((((−(x) <=

−(9))||((0 == (p−2))&&(1 >= (p−y))&&((x+y) <=

−(6))&&(0 >= (−(p)+y))))||((0 == (p−2))&&(x <=

−(7))&&(0 >= (p − y))))||((0 == (p − 1))&&(0 >=

(p − y))&&((x − y) <= −(9))&&(2 >= (−(p) +

y))&&((x + y) <= −(5))))||((0 == (p − 1))&&(x <=

−(7))&&(0 >= (p−y))&&((x+y) <= −(2))))||((0 ==

(p − 1))&&(1 >= (−(x) − y))&&((−(p) + x) <=

−(8)))), (8 >= x)&&!(((0 == (p − 2))&&(1 >=

(p − y))&&((x + y) <= −(6))&&(0 >= (−(p) +

y))))&&!(((0 == (p − 2))&&(x <= −(7))&&(0 >=

(p−y))))&&!(((0 == (p−1))&&(0 >= (p−y))&&((x−

y) <= −(9))&&(2 >= (−(p) + y))&&((x + y) <=

−(5))))&&!(((0 == (p − 1))&&(x <= −(7))&&(0 >=

(p − y))&&((x + y) <= −(2))))&&!(((0 == (p −

1))&&(1 >= (−(x)− y))&&((−(p) + x) <= −(8))))



29

Vita

Yuandong Cyrus Liu

Address 700 Grand Street, Hoboken, NJ 07030

Education Stevens Institute of Technology, Hoboken, NJ
Ph.D. in Computer Science, Dec. 2022

Beijing University of Posts and Telecommunications, Beijing, China
M.S. in Information Security, March 2017

North China University of Science and Technology, Hebei, China
B.S. in Computer Science, June 2014

Publications Yuandong Cyrus Liu, Chengbin Pang, Daniel Dietsch, Eric Koskinen,
Ton-Chanh Le, Georgios Portokalidis, and Jun Xu.
Proving LTL Properties of Bitvector Programs and Decompiled Binaries,
APLAS 2021

Y. Cyrus Liu, T. C. Le, E. Koskinen.
Source-Level Bitwise Branching for Temporal Verification,
arXiv e-prints, arXiv: 2111.02938

Talks Seton Hall University seminar talk on DrNLA and Cybersecurity, Nov. 2022.
Research work on DrNLA, NJPLS, Oct. 2022.
Paper presentation on DarkSea, APLAS, Oct. 2021
Student forum, poster presentation on FMCAD, Oct. 2021.
Participant talk on LTL, OPLSS, July 2018.

Community Paper Review, APLAS 2022, July 2022.
Service Artifact Evaluation Committee, CAV 2022, May 2022.

Artifact Evaluation Committee, TAP 2021, CGO 2021, Oct. 2020.
Student Volunteer, PLDI 2018, June 2018.


	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Challenges
	Solutions
	Related Work
	Verification of Bitvector Programs
	Binary Analysis with Formal Methods
	Dynamic Verification

	Contributions and Dissertation Organization

	Foundations
	Program Semantics and Transition Systems
	Boogie Program
	Semantics
	Logical Transition Relation

	Temporal Logic and Büchi Automaton
	Linear Temporal Logic
	Computation Tree Logic
	 Language and Büchi Automaton

	LTL Verification
	Principal Verification Tools and Dynamic Verification
	Static Temporal Verification
	Dynamic Verification


	Temporal Verification of Bitvector Programs
	Motivating Examples
	Bitwise-branching
	Reachability of Bitvector Programs
	Termination and LTL of Bitvector Programs

	Temporal Verification of Decompiled Binaries
	Overview
	LTL Verification of Decompiled Binaries
	Verification Oriented Translations for Decompiled Binaries
	DarkSea: A Toolchain for Temporal Verification of Lifted Binaries
	FABE in DarkSea

	Evaluation
	Termination of lifted binaries
	LTL of lifted binaries


	Temporal Verification of Polynomial Programs
	Overview Through A Motivating Example
	Dual Refinement
	Static Validation Through Reachability
	Dynamic Generalization of Counterexamples
	Convergence and Termination of DrNLA
	DrNLA Implementation
	Evaluation
	Nonlinear CTL Benchmarks
	DrNLA Synthesizing Results
	Enabling CTL Verification of NLA Programs


	Conclusions
	Summary
	Future Research

	Appendix for All Chapters
	Proofs of Bitwise Branching Rules (Sec. 3.2)
	Full Lifted Code for @PotentialMinimizeSEVPABug@ (Chapter. 4)
	Bug in GCC
	DrNLA on CTLNLABench-DYNAMITE benchmarks
	DrNLA on CTLNLABench-PLDI13 benchmarks
	DrNLA on Handcrafted benchmarks

	Vita

